
Proceedings of the Twenty-Ninth International Conference on Automated Planning and Scheduling (ICAPS 2019)

Goal Reasoning in the CLIPS
Executive for Integrated Planning and Execution

Tim Niemueller, Till Hofmann, Gerhard Lakemeyer
Knowledge-Based Systems Group

RWTH Aachen University, Germany

Abstract

The close integration of planning and execution is a challeng-
ing problem. Key questions are how to organize and explicitly
represent the program flow to enable reasoning about it, how
to dynamically create goals from run-time information and
decide on-line which to pursue, and how to unify representa-
tions used during planning and execution.
In this work, we present an integrated system that uses a goal
reasoning model which represents this flow and supports dy-
namic goal generation. With an explicit world model repre-
sentation, it enables reasoning about the current state of the
world, the progress of the execution flow, and what goals
should be pursued – or postponed or abandoned. Our execu-
tive implements a specific goal lifecycle with compound goal
types that combine sub-goals by conjunctions, disjunctions,
concurrency, or that impose temporal constraints.
Goals also provide a frame of reference for execution moni-
toring. The current system can utilize PDDL as the underly-
ing modeling language with extensions to aid execution, and
it contains well-defined extension points for domain-specific
code. It has been used successfully in several scenarios.

1 Introduction
Robotics remains to be a challenging environment for task
planning and scheduling. Typical domains often require
elaborate and intricate modeling, hybrid numeric symbolic
representations, temporal constraints, and a notion of uncer-
tainty. Large efforts are made to simplify the actual problem
enough so it can be expressed in a frugal language such as
PDDL. Planning times are a particular challenge, as often
a near-reactive performance is expected and long planning
times are hardly acceptable. Robots are machines that are in-
tended to achieve a specific objective in the physical world.
This emphasizes the particular importance of the actual exe-
cution of plans. Problem sizes can scale from static robot
arm, over mobile transport platforms, to complex multi-
robot scenarios, that require a great many decisions along
the implementation and integration process, e.g., whether to
use a central planner, or a distributed approach with local
decision making and coordination.

Many languages and systems to represent and facilitate
the execution of such plans have been proposed in the past,

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

for example OpenPRS, PLEXIL, RMPL, or ROSPlan, to
name but a few (cf. Related Work in Section 6). PLEXIL
and RMPL focus mostly on a plan representation language
with associated executives which can interpret such plans
and invoke actions. OpenPRS provides a reasoning engine
and plan representation language, but lacks a powerful plan-
ner integration. ROSPlan provides a fully integrated system
that incorporates a knowledge base, an accessible domain
representation, planner integration, and an execution system.
However, for such systems goals are mostly static and given
as part of the invocation of that very system, rather than be-
ing an area of reasoning itself.

In this paper, we present the CLIPS Executive (CX), an
integrated system that performs the entire high-level deci-
sion making process. The CX uses an explicit representation
of goals and their dependencies as its core structure to guide
and monitor the overall program flow. This is based on the
idea of goal reasoning (Aha 2018), which means to contin-
ually reason about goals to pursue and dynamically adjust
or change goals. In the CX, goals adhere to a specific life-
cycle extending the ideas by Roberts et al. (2014), which
makes the high-level execution flow explicit and observable,
and can provide explanations of what the robot is doing
and why. A declarative, domain-specific component reasons
about and formulates relevant goals, and makes decisions
on which goals to select and pursue, or when to abandon a
goal. Goals can be organized in tree structures with expres-
sive inner node semantics. This way, planning problems can
be decomposed into more manageable sub-problems. This
is done, for one, to improve planning performance, and for
another to enable the encoding and exploitation of known
structure inherent to the domain. To bring about a goal, off-
the-shelf planners can be used to generate a suitable plan,
for example PDDL-based planners. We avoid modeling in-
consistencies, that can often arise between a planner and the
executive, by using the exact same PDDL domain model for
both purposes, and augmented it with extensions relevant for
execution. The CX can execute plans according to a user-
specific action selection strategy, e.g., sequentially or con-
currently with temporal constraints. Representing goals ex-
plicitly also enables generic and domain-specific execution
monitoring. This can be on a very coarse level, e.g., purging
infeasible goals, or very fine-grained probing down into the
action representation of plans and world model facts.

754



Our main contributions are the fine-grained modeling of
all aspects of the planning and execution system, the close
integration between planning and execution models, and the
explicit flow definition through a revised goal lifecycle. To
the best of our knowledge, there is no such comprehensive
(goal) reasoning and execution system thus far.

An example domain is the Planning and Execu-
tion Competition for Logistics Robots in Simulation
(PExC) (Niemueller et al. 2016a). There, a group of three
robots has to plan, execute, and coordinate production in
a virtual factory. Challenges are the temporal constraints
on orders, which must be delivered in specific time win-
dows, concurrency requirements, uncertainty, the combina-
torial challenge during planning, and oversubscription (more
orders come in than are feasible, and the robot team must
make decisions which orders to pursue).

In the following, we give a brief overview of our system
(Section 2), before giving details about the goal representa-
tion and how it is used for flow control (Section 3). In Sec-
tion 4 we describe planning and execution. We give a brief
evaluation in Section 5. Detailed related work can be found
in Section 6. We conclude in Section 7.

2 System Overview
The CX is implemented using the CLIPS rule-based produc-
tion system (Wygant 1989). It consists of a fact base, a set
of rules, and a forward chaining inference engine. Rules de-
scribe patterns in the fact base, which trigger its activation
when matching using the efficient graph-based Rete algo-
rithm (Forgy 1982). When a rule is activated, it is added to
an agenda. A conflict resolution mechanism singles out one
activated rule on the agenda and executes its body. This is
done until no more rules are on the agenda.

CLIPS was chosen because it provides a very efficient
pattern matching engine which fits nicely with the overall
event-based flow. This is also what enables to easily and ef-
ficiently scale to a large number of goals, deep trees, and
large plans, since the individual rules need only be con-
cerned with an element at the appropriate level, e.g., a goal
or a plan action, without getting lost in the explicit spec-
ification of the actual control loop or even parallelization.
Furthermore, it generates extensive logs describing exactly
when and especially why a certain rule fired, and what modi-
fications it made to the knowledge base. This detailed tracing
enables in-depth temporal and causal evaluation and debug-
ging (with some tool support).1

The CX emphasizes a separation of concerns. The fol-
lowing components can be distinguished:
Domain and plan representation The domain is repre-
sented explicitly in the fact base. It is based on PDDL input,
but features some extensions relevant during execution (Sec-
tion 2.1). The plan representation supports durative actions.
Goal reasoning A domain-specific set of rules determines
goal mode transitions (cf. Section 3.4).

1This has been used, for example, for a detailed automated
analysis (Niemueller et al. 2015) of logistic robots instructed by
a CLIPS-based controller and monitor (Niemueller et al. 2016b).

Action selection This component enables diverse interpreta-
tions of plans, for example executing a plan in sequence, or
considering temporal dependencies enabling concurrency.
Action execution Executor modules implement or invoke
an action, e.g., calling a basic behavior, a ROS action, or
starting a communication act.
Coordination Handling limited resources and ensuring a
conflict-free execution for a group of agents may require a
module to communicate and provide mechanisms such as
leader election or mutual exclusion.
World model and state estimation The current belief about
the world must be kept consistent and synchronized with
other agents. It also provides the one binding source of
knowledge. It also requires incorporating information from
the underlying system or received over the network.
Execution monitoring Representing goals, plans, and their
progress explicitly enables reasoning about the current state
of affairs, in particular validating the remaining plan with
respect to the current world model (cf. Section 4.4).

These components are implemented in CLIPS in separate
areas. The interface between the components is defined by a
specific set of facts in the common shared fact base. For ex-
ample, the goal reasoner reacts on goal fact changes (cf. Sec-
tion 3.1) and draws on the common world model representa-
tion in the fact base. The action selector handles plan actions
defined in plans associated with a dispatched goal, and is-
sues commands to the underlying system. Multiple systems
communicate through a replicated database (robot memory).
The CLIPS context is embedded into the system’s main loop
typically running at 25 Hz.

2.1 Models
In the following, a number of different models with
varying scopes are necessary for the description of the
PDDL integration. We briefly describe each of these mod-
els (Niemueller, Hofmann, and Lakemeyer 2018).
Domain Model D The domain model is akin to a PDDL
domain and contains descriptions of operators (action tem-
plates), predicates, and object types. One of the most im-
portant aspects is that both, the planner and the CX, use the
same domain model.
Planner Model P The planner model contains the facts and
object instances the planner can represent and reason about.
In the case of PDDL, this is the set of initial facts and ob-
jects that will be stored in the problem file. For this paper,
we assume a symbolic model making the closed world as-
sumption.
Execution Model E The execution model is a superset of
(and thus extended) domain model. It may contain enriched
operator descriptions (for example mentioning effects only
relevant during execution) and designate sensed predicates
(cf. Section 4.3).
World Model W The world model contains all relevant
information known about the internal and external environ-
ment. It is a superset of P; in addition to the facts needed by
the planner, it contains facts that are irrelevant for planning
but used during execution, e.g., precise positions and infor-
mation about other robots. It features a richer representation

755



supporting lists, numbers, symbols, and strings. Facts in the
world model are identified by a unique key. The world model
is the only interface to ingest information into the executive
(aside from action feedback).

In short, E extends D with additional operators and op-
erator properties, while W extends P by additional facts
needed for execution. In other words, P is the restriction
of W to facts and objects required for planning. The plan-
ner does not modify P directly, rather, it uses it to formulate
the planning problem. Both D and E are generated from the
PDDL domain description, and additional properties in E
are asserted by the domain designer.

Models P and W are synchronized automatically. The
system tracks changes in either model and replicates the nec-
essary modifications in the other model. This synchroniza-
tion is performed with high priority, avoiding making deci-
sions on a partly updated model.

PDDL has been chosen as a baseline representation for its
simplicity and widespread use. As long as appropriate syn-
chronization mechanisms are provided, it can be exchanged
or extended. Another option is to provide appropriate con-
version methods to integrate planners with other models.
We have, for example, integrated the CX with an SMT-
based planner (Niemueller et al. 2017) where we generate an
appropriate SMT representation for planning from the CX
world model.

3 Goals and a Goal Lifecycle as Flow Control
Goals are the core entity that describes objectives which are
considered or pursued. In the following, we give a detailed
account of goals (Section 3.1), how they are refined over
time (Section 3.2), how to compose them in tree structures
(Section 3.3), and how to change goal modes (Section 3.4).

3.1 Goals
Goals are one of the core data structures and describe all rel-
evant aspects to achieve certain objectives in a declarative
way. A goal is either meant to achieve or to maintain some
condition or state. Each goal instance has a unique identifier
and a priority. A crucial property to describe the program
flow is the goal mode, which describes what has happened to
the goal last. Once a goal has advanced sufficiently, it carries
information about its outcome. Goals can have parameters
and meta information that allow for easy re-use of goal tem-
plates. Furthermore, goals can be used to initiate and track
resource allocation.

Listing 1 shows the data structure used to represent a goal.
Each goal has a unique identifier and its type. The class is
used to match goal reasoner rules (cf. Section 3.4). The sub-
type and parent slots are used to form goal trees. The mode
and outcome slots are used for flow control. Error informa-
tion can be provided in machine and human readable form.
Parameters enable to use goal templates for goal instantia-
tion, and the meta field is used as an internal storage, e.g.,
to count the number of retries. There can also be resource
requirements and allocations associated with a goal (cf. Sec-
tion 4.5). Once the executive has committed to a goal, it de-
notes which plan or sub-goal should be executed.

1 (deftemplate goal

2 (slot id (type SYMBOL))

3 (slot class (type SYMBOL))

4 (slot type (type SYMBOL) (default ACHIEVE)

5 (allowed-values ACHIEVE MAINTAIN))

6 (slot sub-type (type SYMBOL))

7 (slot parent (type SYMBOL))

8 (slot committed-to (type SYMBOL))

9
10 (slot mode (type SYMBOL)

11 (allowed-values FORMULATED SELECTED

12 EXPANDED COMMITTED

13 DISPATCHED FINISHED

14 EVALUATED RETRACTED))

15 (slot outcome (type SYMBOL)

16 (allowed-values UNKNOWN COMPLETED

17 FAILED REJECTED))

18 (multislot error)

19 (slot message (type STRING))

20
21 (multislot params)

22 (multislot meta)

23 (multislot required-resources (type SYMBOL))

24 (multislot acquired-resources (type SYMBOL))

25 )

Listing 1: Goal template in CLIPS.

3.2 Goal Lifecycle
The goal lifecycle describes how a goal progresses over
time, which is represented its mode. The lifecycle proposed
in this work is based on ideas by Roberts et al. (2014), which
is implemented in ActorSim (Roberts et al. 2016). In their
lifecycle, there is a strict refinement order that determines
how goals proceed. Once a goal has finished, it is evaluated.
It may be pruned or moved back to an earlier mode.

We adapt the lifecycle by re-ordering certain steps, and
accounting for explicit goal rejection, and a representation
of the outcome of a goal. Figure 1 shows the proposed life-
cycle. An achievement goal is initially formulated, only stat-
ing that it may be relevant and should be considered. By
some reasoning mechanism, a goal may be selected. This
will trigger expansion, for example invoking a planner, pos-
sibly to multiple goals at the same time. The CX may then
commit to a plan or sub-goal of selected (non-conflicting)
goals. The plans associated with such goals are then dis-
patched. Eventually, the goal is finished, after which the out-
come is recorded to indicate that the goal has succeeded or
failed to bring about the intended effects. The goal and its
outcome is then evaluated, that is, the implications on the
world model are determined and applied. Then, the goal is
marked for retraction, which allows the CX to remove the
goal, release resources (cf., Section 4.5), and any other as-
sociated data such as plans. Note the lifecycle’s alternating
acting and choice modes (indicated by gray and white boxes
in Figure 1, respectively). Before committing to a goal, it
may be rejected. A typical pattern is to generate a number
of possible candidate goals. One or more goals are then se-
lected for execution, the remaining goals are rejected. This
clearly represents the intentions of the CX. Unlike the ear-

756



FORMULATED

SELECTED

EXPANDED

COMMITTED

DISPATCHED

FINISHED

EVALUATED

RETRACTED

Goal Reasoner

Choose among goals

Expander generates plan

Commit to a plan or sub-goal

Acquire goal resources

Action selection and execution

Evaluation of goal outcome

CX/System

R
e
je
c
ti
o
n

R
e
-i
n
it
ia
te

m
o
n
it
o
ri
n
g
(m

a
in
te
n
a
n
c
e
g
o
a
l
o
n
ly
)

Figure 1: Goal lifecycle: each box represents a possible
mode. Gray filled boxes denote modes for which the CX
must perform some function, white ones are the result of
making some choice.

lier model (Roberts et al. 2014), the CX goal lifecycle does
not allow for an achievement goal that has progressed into a
later goal mode to be reset into an earlier mode.

Figure 2 shows three example goal lifecycles. Goal 1 is
an achievement goal. It is expanded with two plans (ensem-
ble planning). The goal reasoner (cf. Section 3.4) commits
to one of the plans for execution. It is then dispatched and
eventually fails, due to the failure of some action. Goal 2 is
expanded with a single plan. However, it is subsequently re-
jected, for example because some other goal was prioritized,
or its requirements could not be met. Goal 3 is the root of a
goal tree (cf. Section 3.3 for details). It is supposed to try all
of its sub-goals and succeed if any of the sub-goal succeeds.
Here, a new goal 3a is posted and eventually succeeds.

A maintenance goal is meant to act in several capacities:
it denotes a constraint to be considered, for example, dur-
ing goal selection; it may also describe a condition, which
must hold. We focus in particular on the latter case. Such a
condition may be used, for example, to assert the availabil-
ity and health of some software component, or to implement
periodic actions, such as service discovery announcements
(where the condition would be invalidated periodically with

a timeout). In this representation, the conditions can become
a desired state. Once a maintenance goal is selected, it mon-
itors the condition. If the condition is violated, the program
is not halted, but rather the goal is expanded by creating a
new achievement sub-goal, which is supposed to recover the
very condition. Once the sub-goal has been evaluated, the
maintenance goal finishes and may then be selected to en-
able monitoring again.

3.3 Goal Trees
Goals describe the objectives to achieve or conditions to
maintain. Some such goals may be related in specific ways,
creating dependencies among them. To model these, we in-
troduce the concept of a goal tree. A goal tree recursively
consists of a root goal, which denotes the specific handling
of the tree, and one or more sub-goals. Goal 3 in Figure 2 is
a tree root goal. During expansion, sub-goals are created, of
which 3a is shown in more detail. It is a regular achievement
goal that generates and executes a plan. Note, that for the
root goal some transitions are performed automatically by
the CX, e.g., committing to the highest priority sub-goal af-
ter expansion (the priorities can be dynamically assigned to
enable reasoning about the order of execution at run-time). If
no sub-goal had been added at all for an expanded root goal,
it would fail. If all sub-goals are rejected, the root goal is
rejected. The user handles the sub-goal lifecycle as required
(it may be the root of another sub-tree). To dispatch the root
goal, the highest priority sub-goal is selected. Once this has
been finished and evaluated, the root goal is finished.

There are currently five root goal types specified. A run-
all goal runs all sub-goals. It succeeds if all sub-goals suc-
ceed and fails if any sub-goal fails (thus forming a conjunc-
tion on the results). A try-all goal runs sub-goals until at
least one sub-goal succeeded, or fails if all sub-goals have
failed (forming a disjunction on the results). The run-one
anticipates rejection of goals and runs the first non-rejected
goal. The outcome of this sub-goal then directly determines
the root goal result (this forms a case-based choice node).
The latter two root goal types define higher level control
constructs. The retry goal can be used to re-try a sub-goal
a specified number of times if it fails. If the sub-goal suc-
ceeds within the given maximum number of tries, the root
goal succeeds. The timeout goal executes the sub-goal with
a specified time bound. If the sub-goal does not complete
within that time bound, it is deemed to have failed. Other-
wise, the outcome of the sub-goal is passed along.

Goal Trees and Similarities to PLEXIL The Plan Exe-
cution Interchange Language (PLEXIL) (Verma et al. 2006)
is a representation language for plans in automation. The
PLEXIL Executive is an implementation to interpret and ex-
ecute PLEXIL plans. A plan is decomposed into a set of
typed nodes which serve a specific function, such as mak-
ing an assignment or issuing a command to the controlled
system. PLEXIL supports concurrency, program flow prim-
itives (conditionals, loops), and explicit sensing of external
information. The executive deals with plan execution only.
It does not invoke or control a planning process. However, a
prototype has been developed to externally combine a plan-

757



FORM
ULATED

SELECTED

EXPANDED

COM
M

IT
TED

DIS
PATCHED

FIN
IS

HED

EVALUATED

RETRACTED

1

2

3 ∨ ∨

3a

∨

3a

∨

3a

3a

Goal Completed Goal Failed Goal Rejected Goal Retracted Goal ∨ Try-All Goal
	 Retry Goal

Plan
Running Action

Failed Action

Completed Action

Goal/Goal and Goal/Plan Association

Goal or Plan Commitment
Same goal in both chains

User-defined Mode Transition
Automatic Mode Transition

M Goal Mode

Figure 2: Several goals in-flight in the CX. The goal lifecycles may be independent and even run in parallel.

ner with PLEXIL (Muñoz, R-Moreno, and Castaño 2010).
There is a certain similarity between goal trees and

PLEXIL nodes. While in PLEXIL, nodes provide seman-
tics for an imperative instruction language, goals provide a
declarative way to express objectives and intentions. Goal
trees can lift plan execution instructions to defining mission
policies.2 However, at this point, we do not provide a full
mapping from PLEXIL expressions or nodes to goal trees.

3.4 Goal Reasoning

Goals transition through several modes during their lifecy-
cle. The CX component, which is responsible for triggering
these mode transitions and making choices in the respec-
tive modes, is the goal reasoner. This is in accordance with
Aha’s definition: “goal reasoning [is] the process by which
intelligent agents continually reason about the goals they are
pursuing, which may lead to goal change” (Aha 2018).

2This is somewhat similar to the way Golog (Levesque et al.
1997) lifted imperative programming concepts from machine in-
structions to actions operating in an environment.

The CX provides a framework which allows a devel-
oper to express goals, how they change, and to formulate
goal trees easily. The actual formulation of the CLIPS rules
which define the very criteria for mode changes is highly
domain-dependent, i.e., it is often based on domain-specific
knowledge in the world model.

Listing 2 shows example rules that initiate planning once
a PDDL goal has been selected, and associate a plan with a
goal and mark it as expanded once the planner completes.

4 Planning and Execution
One particular way to expand a goal is to use a planner.
Once the goal is dispatched, its plan needs to be executed
and sensing results need to be incorporated while monitor-
ing the execution of the plan. Additionally, the agent may
need to coordinate with other agents to pursue shared goals
and to handle limited resources.

4.1 Planner Integration
One method to expand a goal is to use a planner, such as
a PDDL planner as shown in Figure 3. In order to plan a

758



1 (defrule goal-reasoner-pddl-planning-start

2 ?g <- (goal (id ?goal-id)

3 (class PDDL) (mode SELECTED))

4 =>

5 (pddl-start ?goal-id)

6 )

7
8 (defrule goal-reasoner-pddl-planning-finished

9 ?g <- (goal (id ?goal-id)

10 (class PDDL) (mode SELECTED))

11 ?c <- (pddl-done (goal ?goal-id) (plan ?plan-id))

12 ?p <- (plan (id ?plan-id))

13 =>

14 (retract ?c)

15 (modify ?p (goal-id ?goal-id))

16 (modify ?g (mode EXPANDED))

17 )

Listing 2: Goal expansion through planning.

task with a PDDL planner, we need a domain description
and a problem description. As we also use PDDL to repre-
sent the actions in the domain model, re-using the PDDL
domain description as planner model guarantees that the re-
sulting plan will actually be executable and accomplish the
goal. The problem description is generated from the planner
model, which is a sub-set of the world model, as described
in Section 2.1. The PDDL goal formula is specified in the
expansion rule of the particular goal. After generating the
problem description, a PDDL planner is called, which runs
concurrently to the CX. This allows to plan for a goal while
another goal is executing, or to plan for the same goal with
multiple planners. Limiting the planner model to a sub-set of
the relevant facts of the world model reduces the size of the
search space of the planner and therefore increases planning
efficiency, while guaranteeing consistency.

The goal is considered as expanded once the planner gen-
erated a plan. If the PDDL planner fails to determine a plan,
the goal has failed. Following the goal lifecycle (cf. Sec-
tion 3.2), the CX may or may not decide to commit to the
goal, for example evaluating the plan’s cost.

4.2 Plan Execution
In this paper, we focus on the execution for sequential plans
(partially ordered plans with concurrent execution of multi-
ple actions are, however, generally possible). Once commit-
ted, execution starts and the goal is marked as dispatched.

Each action of the plan follows the state machine shown in

CLIPS Executive

domain model

world model

sync

Planner

planner

planner plugin

problem plan

robot memory
sync

plan

query

plan

call

domain file

Figure 3: Data flow for PDDL-based planner integration and
robot memory world model synchronization.

FORMULATED

PENDING

WAITING

RUNNING

EXECUTION-SUCCEEDED

SENSED-EFFECTS-WAIT

SENSED-EFFECTS-HOLD

EFFECTS-APPLIED

FINAL

EXECUTION-FAILED

FAILED

Select

Invoke action

Action started

Skill failed
or timeout

Retry

Skill succeeded

wait-sensed

Sensed effects occurred

Apply non-sensed effects

!wait-sensed

Expected effects
not observed

exogenous

Figure 4: The possible states of a plan action and the transi-
tions between those states.

Figure 4. In the first step, the action selection determines the
next executable action to execute, which may be as simple
as picking the next action in the plan if there is no action be-
ing executed. Note that while the action may be executable
in the planner model, it may not be executable, yet, during
action selection, as the occurrence of exogenous events may
have caused its precondition to not be satisfied, yet. The se-
lected action is marked as pending and passed to an executor,
which controls the dotted transitions to the sharp cornered
states. The CX currently supports two kinds of executors:
the first is implemented inside the executive in CLIPS, e.g.,
for communication. The second executes a physical action
through, e.g., the Lua-based Behavior Engine (Niemueller,
Ferrein, and Lakemeyer 2009). Once the executor started the
action, it is waiting for the base system to confirm the ac-
tion is running, and eventually finishes. For a failed action,
the goal its plan belongs to is typically considered failed. If
successful, the effects are applied (for sensed effects cf. Sec-
tion 4.3) and the action is set to final and the goal proceeds.

4.3 Sensing
Updated sensing results are directly incorporated into the
world model, i.e., whenever a sensor reports new data, the
respective world model fact is updated. If the sensing result
is relevant for the planner model, the fact is also propagated.
Whenever the planner model changes, the preconditions of
all currently pending and waiting actions are re-evaluated.
Thus, we can directly detect any change that can affect the
plan that is currently being executed. This is particularly
useful if we want to make use of sensed effects. A sensed
effect of an action is expected to occur, but it is not imme-
diately applied to the planner model. Instead, the CX waits

759



1 (defrule xm-next-action-not-executable

2 ?g <- (goal (id ?goal) (mode DISPATCHED)

3 (committed-to ?plan))

4 (plan (id ?plan) (goal-id ?goal) (type SEQUENTIAL))

5 ; At least one action which is still to be executed

6 (plan-action (goal-id ?goal) (plan-id ?plan)

7 (id ?id) (action-name ?action-name)

8 (state FORMULATED) (executable FALSE))

9 ; No other FORMULATED action which comes earlier

10 (not (plan-action (goal-id ?goal) (plan-id ?plan)

11 (state FORMULATED)

12 (id ?oid&:(< ?oid ?id))))

13 ; there is no action which is currently ongoing

14 (not (plan-action (goal-id ?goal) (plan-id ?plan)

15 (state ˜FORMULATED&˜FINAL&˜FAILED)))

16 =>

17 (modify ?g (mode FINISHED) (outcome FAILED)

18 (error STALLED-NONE-EXECUTABLE))

19 )

Listing 3: Execution monitoring for stalled sequential plans
that should strictly progress.

for the world model update that confirms that the effect has
occurred, and only then applies the remaining effects and
sets the action to final. Optionally, instead of waiting for the
effect to occur, we can also mark an action to not wait for
the sensed effects, and instead directly continue with the ex-
ecution of next step in the plan. This is useful especially for
modeling actions that start an external process. For example,
after pressing the button of a machine, instead of waiting for
the machine to finish, we state that the effect will eventually
occur and continue the execution of the remaining plan. Fur-
thermore, waiting for a precondition on the same predicate
in later actions ensures that the effect does happen in due
time (or we can determine that it did not and abort).

Sensed effects are only part of the execution model and
are not represented as such in the planner model. Instead,
the planner treats them as normal effects.

4.4 Execution Monitoring

The execution of a plan needs to be monitored continuously
to deal with exogenous events. We provide generic execu-
tion monitoring rules, e.g., to retry a failed action, or to fail
an action if it takes too long. Additionally, one may want
to let a goal fail early if the goal will no longer be accom-
plished by the current plan, or if the goal is not desirable
anymore. In the first case, a re-expansion of the goal will re-
sult in an updated plan. Alternatively, instead of failing the
goal, execution monitoring also allows to adapt the current
plan in light of exogenous events, e.g., by adding actions
that revert an exogenous effect. By doing so, the number of
failed goals may be minimized, leading to a more efficient
execution while not pursuing goals that are no longer useful.

Listing 3 shows an example for sequential plans to detect
if a plan cannot progress when the preconditions of the next
action are not met. Similarly, temporal plans can be moni-
tored, e.g, for actions running over time or starting too late.

Handling Uncertainty Uncertainty is handled at execu-
tion time and not explicitly represented for planning, e.g., as
probability models. Instead, it is handled as part of the ex-
ecution monitoring. A close supervision is applied to both,
goals and plans as they unfold and deviations can be de-
tected quickly. An action with uncertain outcome could be
repeated, or the goal re-expanded into a new plan. The di-
vision of goals into smaller sub-goals reduces the required
re-planning time and thus the overall impact on execution,
making this more feasible. A domain designer might also
use a try-all goal (cf. Section 3.3), which tries several op-
tions, e.g., to account for possible failure. In the future, we
may add an option for a more explicit representation of un-
certainty, which could also be used during planning.

4.5 Multi-Agent Task Coordination
In cooperative distributed planning, a group of agents co-
operates to fulfill a shared set of goals, whereas in negoti-
ated distributed planning, each agent pursues its own goal
and needs to coordinate with the other agents in order to
render its local plan successful (DesJardins et al. 1999). We
support both scenarios by implementing multi-agent world
model synchronization, a generic locking procedure, and a
resource locking mechanism that is tightly bound to goals.

Shared World Model Certain world model facts are not
only useful locally, but also to other agents, e.g., the state
of a commonly used machine. We implement world model
synchronization using a shared database (Niemueller, Lake-
meyer, and Srinivasa 2012). Each robot runs a database in-
stance for local (agent-specific) and global (shared) world
model facts. The global world model database is part of a
replica set with one database instance for each robot. The
replica set mechanisms take care of data distribution, shared
updates, and conflict resolution. This way, if one agent up-
dates a fact in the global world model, it is automatically
distributed to the other agents, and the eventual consistency
guarantees of the database propagate to the world model.

Mutual Exclusion For locking, we again built upon the
replicated database, where we maintain a distinguished col-
lection for mutex locks. An agent may lock a mutex by up-
dating the lock owner in the respective database entry and
requesting a majority acknowledgment, i.e., a majority of
the agents have to agree to the update. This way, we can
guarantee that at any point in time, at most one agent owns
a specific lock. Based on this locking mechanism, we spec-
ify the two actions lock and unlock, which can be used as
regular actions as part of a plan.

Consider the simple example of a goto action, as shown in
Listing 4. By requiring a lock on the location before moving
there, the planner will automatically add a lock action to the
plan. This action will always succeed in the planner model.
However, during execution, another agent may have already
acquired the lock, breaking the precondition of the lock ac-
tion. The action will fail to execute and the respective goal
will be aborted, if desired. Alternatively, an implementation
could wait for the lock for a certain amount of time.

760



1 (:action lock

2 :parameters (?m - mutex)

3 :precondition (not (locked ?m))

4 :effect (and (locked ?m)))

5 (:action goto

6 :parameters (?from ?to - location)

7 :precondition (and (at ?from) (locked ?to))

8 :effect (and (not (at ?from)) (at ?to)))

Listing 4: The actions lock and goto in PDDL

Resource Allocation Using mutex locks, we provide a
goal-specific resource allocation mechanism. Each goal can
have a number of required resources that it needs before it
can be dispatched. If a goal has a required resource, the goal
reasoner requests a lock for the resource once the goal is
committed. Only after all required resources have been allo-
cated, the goal changes its mode to dispatched. If a resource
lock cannot be acquired because the resource is currently
used by another agent, all already acquired resources are re-
leased and the goal is rejected. Once a goal is retracted, all
its acquired resources are released.

The resource allocation mechanism allows a straight-
forward implementation of multi-agent coordination, since
the domain designer only needs to specify the required re-
sources. During execution, only one agent can successfully
acquire all resources for a specific goal and is able to dis-
patch it, all other agents reject the goal and select another
if applicable. A typical example would be a machine that a
robot wants to use. Only one robot will acquire the machine
resource, the other robots will select goals that do not in-
volve that machine. By making the locking resource-specific
rather than goal-specific, the agents will not only avoid pur-
suing the same goal, but will also reject any goal that in-
volves a resource that is used by another agent.

In contrast to lock actions described above, a resource is
always locked for the entire remaining lifecycle of the goal.

5 Evaluation
We have implemented several scenarios, ranging from low
(single robot, few actions) to high complexity (multi-robot
scenario, long running). Here, we focus on productions lo-
gistics competitions for real robots and in simulation.

The CX has been used since 2018 in the RoboCup Lo-
gistics League (Niemueller et al. 2013) by the Carologis-
tics team. There, it is used with pre-defined plans using
a generate-and-filter approach, where the robot formulates
potential goals when idle, rejects infeasible ones, and then
picks the highest priority/reward goal. With this system, the
team was able to win the RoboCup German Open 2018.

For the PExC competition in simulation, the system
has been combined with an SMT-based planning sys-
tem (Niemueller et al. 2017). There, rather coarse goals (per
order) are formulated and a heuristic selects a feasible one.
Then, a suitable representation generated based on the CX’
world model and passed to the planner. The resulting plan
with explicit action dependencies is converted into a CX
plan and executed. The approach won the PExC 2018 com-
petition. The results are shown in Figure 5, with another ap-

CaroASP
CaroSMT KCL

0

100

200

Figure 5: Scores of the PExC 2018 round-robin qualifiers
(300 games). Box indicates the 25% and 75% quartiles,
yellow line is median, dotted green line average, whiskers
represent minimum and maximum scores. CaroASP and
CaroSMT are ASP- and SMT-based planning systems of
the Carologistics team, KCL is King’s College London with
ROSPlan.

proach based on Answer Set Programming. While the ASP-
based planner provides a better density and higher scores, it
is still based on an older system (cf. CLIPS-based Agent
in Section 6) that provides less robustness. The CX with
SMT has a better robustness and therefore much higher me-
dian scores.

The computational overhead of the CX itself is negligi-
ble compared to other software components of the robot, in
particular planning systems.

6 Related Work
Numerous systems have been proposed in the past that han-
dle task execution for autonomous systems. A task describes
a concrete and executable specification that aims to achieve
or maintain some goal through the execution of such as a
plan, a policy, or a program. Often a task makes use of prim-
itive actions as a means to effect change in the environment.3
Planning and execution systems greatly vary in terms of the
language or programming interface used for task and action
specification.
ActorSim ActorSim (Roberts et al. 2016) is an implemen-
tation of Goal-Task-Networks (GTN). Goals are considered
as a top-level construct that have a slightly different life cy-
cle. ActorSim itself does not provide a ready-to-use integra-
tion for planning systems. Expansion generates a task, which
is then executed through invoking external actions.

ActorSim as an implementation still has some rough
edges, such as requiring to write reasoning processes in Java
that must be compiled on every modification, or deep and
indirect call chains making it harder to trace. We did imple-
ment the logistics scenario in ActorSim and ran hundreds of
simulated games, in part with very good outcomes. Based
on our experience with ActorSim we revised the goal life-
cycle to more precisely capture the interactions observed in
actual robot systems, and to rephrase what it means to eval-
uate a goal. We also added the explicit notion of rejection

3Some formalisms simply see an action as a basic task.

761



and outcome, which is particularly important to enable, e.g.,
a generate-and-filter approach, which generates a number of
candidate goals, and then sifts through them selecting the
most relevant one(s) only avoiding conflicts.
ROSPlan ROSPlan (Cashmore et al. 2015) is a framework
for task planning that describes a number of exchangeable
components and a set of message types to interconnect these.
Such components are, e.g., planner integration (problem
generation, invocation, result parsing), and fact base storage.
The plan dispatcher generates an Esterel program (Berry and
Gonthier 1992) for execution. It represents actions as nodes
and connects them through signals and slots. Actions are
invoked on the base system for the active nodes. The dis-
patcher does not evaluate preconditions of actions during
execution and hence may invoke actions which cannot be
accomplished. Effects are not automatically applied to the
fact base, but the external action provider has to.
CLIPS-based Agent The rule-based production system
CLIPS has been used before in an incremental task-level rea-
soning system (Niemueller, Lakemeyer, and Ferrein 2013).
It does not provide an explicit task specification language.
Rather, the behavior is defined in a knowledge-based re-
active fashion, where situation classifiers directly decide
on the next action to perform whenever the agent is cur-
rently idle. The system has been extended with a multi-
robot time-bounded planning based on Answer Set Program-
ming (Schäpers et al. 2018).

The CX is an indirect successor of this system, re-
designed from the ground up, putting more emphasis on pro-
viding exact modeling on each part of the system and ex-
plicitly representing the program flow, goal evolution, and
interaction between planning and execution models.
OpenPRS The Procedural Reasoning System (PRS) is
a high-level control and supervision framework to repre-
sent and execute plans and procedures in dynamic environ-
ments (Ingrand et al. 1996).4 PRS has three main elements:
a database containing facts representing the belief about the
world, a library of plans (or procedures) that describe a par-
ticular sequence or policy to achieve a certain (sub-)goal,
and a task graph which is a dynamic set of tasks currently
executing. Tasks are specified in terms of small programs
(supporting loops, conditionals, and recursion), called OPs.
OPs have logic formulas as activation conditions. A spe-
cialty is that multiple OPs can be executed in parallel, which
can make proper plan design non-trivial due to race condi-
tions. OpenPRS does not directly support planner integra-
tion, but typically OPs (partial plans) are written manually.

We have modeled a logistics scenario in Open-
PRS (Niemueller et al. 2016c) and extended it to participate
in PExC 2017. OpenPRS’ parallel invocation pattern does
pose some challenges to cleanly monitor activated OPs and
its meta reasoning capabilities are somewhat tricky to use,
which makes it harder to filter possible OPs. An additional
problem for a generate-and-filter approach is the inability to
phrase queries such as “find a goal, such that there is no goal
with lower priority”. The syntax can represent this, but the
interpreter cannot evaluate such queries.

4OpenPRS is the most widely available PRS version.

Kirk/RMPL The Reactive Model-based Programming
Language (RMPL) (Williams et al. 2003) provides the
means to describe rich control programs including loops
and conditionals. It also supports preemption of programs
by specifying necessary conditions during the execution
of some (partial) program. Furthermore, it supports con-
currency and non-deterministic choice. RMPL is amenable
reactive planning. Kirk is an RMPL-based planner/execu-
tive (Kim, Williams, and Abramson 2001) that transform an
RMPL specification in a temporal plan network for inter-
leaved planning and execution. There are no openly avail-
able implementations for RMPL or Kirk, which we therefore
could not evaluate first-hand.

GOLOG GOLOG (Levesque et al. 1997) is a high-level
programming language based on the Situation Calculus (Re-
iter 2001). Similar to RMPL, GOLOG allows loops and
conditionals, and also supports non-deterministic choice.
GOLOG has been extended for interleaved concurrency (De
Giacomo, Lespérance, and Levesque 2000), on-line execu-
tion (De Giacomo, Lespérance, and Levesque 2000), and
execution monitoring (De Giacomo, Reiter, and Soutchan-
ski 1998). GOLOG can also use PDDL for continual plan-
ning (Hofmann et al. 2016), which interleaves PDDL-based
planning with GOLOG plan execution, plans for acquiring
missing knowledge, and monitors the environment for unex-
pected events and exogenous actions.

T-REX T-REX (McGann et al. 2007) describes a commu-
nication protocol among goals. Several components can pro-
pose or process goals. Goals are expanded either into a time-
line or a direct action. A specific reactor has exclusive own-
ership of a timeline. Other reactors can then operate on sub-
goals in a timeline. Global discrete time is used to synchro-
nize the timelines. The information flow is modeled along
the hierarchical structure of timelines.

The CX provides a more abstract representation of goals
than T-REX, which can be reasoned about and used for ex-
ecution monitoring. The CX’ event-based flow enables a
more flexible design and is clearer through its explicit goal
modes. The multiple components in T-REX could be mod-
eled as goal types in the CX, where expanders would operate
on the individual goals. The CX is more strict in distinguish-
ing goals and plans, where only plans contain direct actions.

7 Conclusion

In this paper, we have described the CLIPS-based Executive
(CX) focusing on its goal reasoning capabilities. Its over-
all program flow is represented and organized by explicitly
representing goals and their specific lifecycle. It determines
how goals progress through several modes, where goal trees
enable to impose more structure on the goal-level. The sys-
tem is closely integrated with, e.g., PDDL-based planners.
CX supports a shared world model between a group of
agents and provides capabilities for multi-agent task coor-
dination by means of mutual exclusion and resource alloca-
tion. The system has been implemented and used success-
fully on real and simulated robots.

762



Acknowledgments
T. Niemueller was supported by the German Na-
tional Science Foundation (DFG) research unit FOR
1513 on Hybrid Reasoning for Intelligent Systems
(http://www.hybrid-reasoning.org).

T. Hofmann was supported by the German National Sci-
ence Foundation (DFG) grant GL-747/23-1 on Constraint-
based Transformations of Abstract Task Plans into Exe-
cutable Actions for Autonomous Robots.

We thank the anonymous reviewers for their insightful
comments and questions which helped clarify several as-
pects of this paper.

We thank I. Bongartz, M. Gomaa, D. Habering, and T.
Viehmann for helpful discussions during CX development.

References
Aha, D. W. 2018. Goal Reasoning: Foundations, Emerging Appli-
cations, and Prospects. AI Magazine 39(2).
Berry, G., and Gonthier, G. 1992. The Esterel synchronous pro-
gramming language: design, semantics, implementation. Science
of Computer Programming 19(2).
Cashmore, M.; Fox, M.; Long, D.; Magazzeni, D.; Ridder, B.; Car-
rera, A.; Palomeras, N.; Hurtos, N.; and Carreras, M. 2015. ROS-
Plan: Planning in the Robot Operating System. In 25th Int. Con-
ference on Automated Planning and Scheduling (ICAPS).
De Giacomo, G.; Lespérance, Y.; and Levesque, H. J. 2000. Con-
Golog, a concurrent programming language based on the situation
calculus. Artificial Intelligence 121.
De Giacomo, G.; Reiter, R.; and Soutchanski, M. 1998. Execu-
tion Monitoring of High-Level Robot Programs. 6th International
Conference on Knowledge Representation and Reasoning (KR).
DesJardins, M. E.; Durfee, E. H.; Charles L. Ortiz, J.; and Wolver-
ton, M. J. 1999. A Survey of Research in Distributed, Continual
Planning. AI Magazine 20(4).
Forgy, C. L. 1982. Rete: A Fast Algorithm for the Many Pattern/-
Many Object Pattern Match Problem. Artificial Intelligence 19(1).
Hofmann, T.; Niemueller, T.; Claßen, J.; and Lakemeyer, G. 2016.
Continual Planning in Golog. In 30th Conference on Artificial In-
telligence (AAAI).
Ingrand, F.; Chatila, R.; Alami, R.; and Robert, F. 1996. PRS:
A High Level Supervision and Control Language for Autonomous
Mobile Robots. In IEEE Int. Conf. on Robotics and Automation
(ICRA), volume 1.
Kim, P.; Williams, B. C.; and Abramson, M. 2001. Executing
Reactive, Model-based Programs Through Graph-based Temporal
Planning. In 17th International Joint Conference on Artificial In-
telligence (IJCAI).
Levesque, H. J.; Reiter, R.; Lesperance, Y.; Lin, F.; and Scherl,
R. B. 1997. GOLOG: a logic programming language for dynamic
domains. Journal of Logic Programming 31(1–3).
McGann, C.; Py, F.; Rajan, K.; Thomas, H.; Henthorn, R.; and
McEwen, R. 2007. T-REX: A Model-based Architecture for AUV
Control. In 3rd Workshop on Planning and Plan Execution for
Real-World Systems.
Muñoz, P.; R-Moreno, M. D.; and Castaño, B. 2010. Integrat-
ing a PDDL-Based Planner and a PLEXIL-Executor into the Ptinto
Robot. In Trends in Applied Intelligent Systems (IEA/AIE).
Niemueller, T.; Ewert, D.; Reuter, S.; Ferrein, A.; Jeschke, S.; and
Lakemeyer, G. 2013. RoboCup Logistics League Sponsored by

Festo: A Competitive Factory Automation Testbed. In RoboCup
Symposium 2013.
Niemueller, T.; Reuter, S.; Ferrein, A.; Jeschke, S.; and Lakemeyer,
G. 2015. Evaluation of the RoboCup Logistics League and Derived
Criteria for Future Competitions. In RoboCup Symposium 2015 –
Development Track.
Niemueller, T.; Karpas, E.; Vaquero, T.; and Timmons, E. 2016a.
Planning Competition for Logistics Robots in Simulation. In WS on
Planning and Robotics (PlanRob) at 26th International Conference
on Automated Planning and Scheduling (ICAPS).
Niemueller, T.; Zug, S.; Schneider, S.; and Karras, U. 2016b.
Knowledge-Based Instrumentation and Control for Competitive
Industry-Inspired Robotic Domains. KI - Künstliche Intelligenz 30.
Niemueller, T.; Zwilling, F.; Lakemeyer, G.; Löbach, M.; Reuter,
S.; Jeschke, S.; and Ferrein, A. 2016c. Industrial Internet of
Things: Cybermanufacturing Systems. Springer. chapter Cyber-
Physical System Intelligence – Knowledge-Based Mobile Robot
Autonomy in an Industrial Scenario.
Niemueller, T.; Lakemeyer, G.; Leofante, F.; and Abraham, E.
2017. Towards CLIPS-based Task Execution and Monitoring with
SMT-based Decision Optimization. In Workshop on Planning and
Robotics (PlanRob) at 27th International Conference on Auto-
mated Planning and Scheduling (ICAPS).
Niemueller, T.; Ferrein, A.; and Lakemeyer, G. 2009. A Lua-
based Behavior Engine for Controlling the Humanoid Robot Nao.
In RoboCup Symposium 2009.
Niemueller, T.; Hofmann, T.; and Lakemeyer, G. 2018. CLIPS-
based Execution for PDDL Planners. In WS on Integrated Plan-
ning, Acting, and Execution (IntEx) at 28th ICAPS.
Niemueller, T.; Lakemeyer, G.; and Ferrein, A. 2013. Incremental
Task-level Reasoning in a Competitive Factory Automation Sce-
nario. In AAAI Spring Symposium - Designing Intelligent Robots:
Reintegrating AI.
Niemueller, T.; Lakemeyer, G.; and Srinivasa, S. 2012. A Generic
Robot Database and its Application in Fault Analysis and Perfor-
mance Evaluation. In IEEE International Conference on Intelligent
Robots and Systems (IROS).
Reiter, R. 2001. Knowledge in Action: Logical Foundations for
Specifying and Implementing Dynamical Systems. MIT Press.
Roberts, M.; Vattam, S.; Alford, R.; Auslander, B.; Karneeb, J.;
Molineaux, M.; Apker, T.; Wilson, M.; McMahon, J.; and Aha,
D. W. 2014. Iterative Goal Refinement for Robotics. In WS on
Planning and Robotics (PlanRob) at International Conference on
Automated Planning and Scheduling (ICAPS).
Roberts, M.; Alford, R.; Shivashankar, V.; Leece, M.; Gupta, S.;
and Aha, D. W. 2016. ACTORSIM: A Toolkit for Studying Goal
Reasoning, Planning, and Acting. In WS on Planning and Robotics
(PlanRob) at International Conference on Automated Planning
and Scheduling (ICAPS).
Schäpers, B.; Niemueller, T.; Lakemeyer, G.; Gebser, M.; and
Schaub, T. 2018. ASP-based Time-Bounded Planning for Logistics
Robots. In 28th International Conference on Automated Planning
and Scheduling (ICAPS).
Verma, V.; Jónsson, A.; Pasareanu, C.; and Iatauro, M. 2006. Uni-
versal Executive and PLEXIL: Engine and Language for Robust
Spacecraft Control and Operations. In AIAA Space.
Williams, B. C.; Ingham, M. D.; Chung, S. H.; and Elliott, P. H.
2003. Model-based Programming of Intelligent Embedded Sys-
tems and Robotic Space Explorers. Proceedings of the IEEE 91(1).
Wygant, R. M. 1989. CLIPS: A powerful development and delivery
expert system tool. Computers & Industrial Engineering 17(1–4).

763


