
CLIPS-based Execution for PDDL Planners

Tim Niemueller and Till Hofmann and Gerhard Lakemeyer
Knowledge-Based Systems Group,

RWTH Aachen University, Germany

Abstract

Integrating planning and execution which treats either com-
ponent as a black box may lead to disparate representations of
the domain or information currently known. Consistency and
bidirectional information flow are then hard to ensure. How-
ever, the separation of these concerns is still useful from an
integration point of view.
In this paper, we discuss the integration of planning systems
using the Planning Domain Definition Language (PDDL)
with an executive based on the CLIPS rule-based production
system. In particular, we describe how we achieved one com-
mon and unified domain model used by both systems and
some additions we add for the execution model. We also
show how the execution model enables effective execution
monitoring and selective replanning.

1 Introduction
Agents and robots that perform in dynamic environments
need to reason about their course of action to achieve their
goals. On the task-level, this requires a system combining
planning and execution.1 Planning is the process of deter-
mining actions (and their ordering – total or partial – and
necessary intermediate conditions). The outcome of this
process is then passed on to execution, which interprets this
plan and invokes and monitors actions that effect the neces-
sary change to achieve specific goals.

There are a wide variety of systems integrating both, plan-
ning and execution. Often, these systems are in some way
biased about which component constitutes the top-most au-
thority, i.e., the part of the system which takes or gener-
ates goals and controls the reasoning and execution process.
Sometimes, a planner is the top-level system and execution
is mere action dispatching downstream, with errors trigger-
ing another planning run. The other view can be that the
executive uses the planner as a black box which is called at
suitable times.

In this paper, we propose a formulation for the integra-
tion of planning systems using the Planning Domain Defi-
nition Language (PDDL) an executive based on the CLIPS
rule-based production system as part of an on-going effort

1Many systems, for example in experimental robotics, often
forgo a lookahead planning system and rather perform simple ac-
tion selection or pursue fixed plans or scripts.

towards a CLIPS Executive (CX). While taking the stand-
point of having the executive as top-most controller, we use a
common domain model including available operators, pred-
icates, and known facts. We focus on the STRIPS fragment
of PDDL with types. We describe a CLIPS representation
of an execution model that is directly derived from the exact
same PDDL domain file used by the planning system. It fea-
tures some extensions made for plan execution, for example
to describe sensed predicates. Effects on such predicates can
be observed and should therefore not be applied directly; in-
stead, the executive should wait for the effect to occur. This
can be useful to model processes that are triggered by the
agent but that do not cause an immediate effect, or for ex-
ogenous actions which are not under the control of the agent
itself. However, since most PDDL models do not account for
these kinds of actions explicitly,2 the planning model must
assume these actions to have deterministic and immediate
effects. During execution, we merely observe sensed pred-
icates and use deviations as input for execution monitoring.
The planner model contains the subset of information known
about the environment suitable for consumption by a plan-
ner. An automatically synchronized world model, a superset
of the planner model, contains all information relevant to the
CX.

In the following, we discuss some related work in Sec-
tion 2 and provide an architecture overview in Section 3.
Our PDDL representation in CLIPS is presented in Sec-
tion 4, the PDDL planner integration in Section 5. We detail
plan execution and monitoring in Section 6, before we con-
clude.

2 Related Work and Background
Numerous systems have been proposed in the past that han-
dle task execution for autonomous systems. A task describes
a concrete and executable specification that aims to achieve
or maintain some goal through the execution of such as a
plan, a policy, or a program. Often a task makes use of prim-
itive actions as a means to effect change in the environment.3

2PDDL+ (Fox and Long 2006) supports events to model exter-
nally triggered changes. However, we do not intend to account for
these effects at planning time, where this can be tedious and costly,
but at execution time where we can cope with contingencies easier.

3Some formalisms simply see an action as a basic task.



Planning and execution systems greatly vary in terms of the
language or programming interface used for task and action
specification.

2.1 Executives
In the following, we focus on execution systems and how
they integrate (with) planning systems.

PLEXIL The Plan Execution Interchange Language
(PLEXIL) (Verma et al. 2006) is a representation language
for plans in automation. The PLEXIL Executive is an imple-
mentation to interpret and execute PLEXIL plans. A plan is
decomposed into a set of typed nodes which serve a spe-
cific function, such as making an assignment or issuing a
command to the controlled system. PLEXIL supports con-
currency, program flow primitives (conditionals, loops), and
explicit sensing of external information. The executive deals
with plan execution only. It does not invoke or control a
planning process. However, a prototype has been developed
to externally combine a planner with PLEXIL (Muñoz, R-
Moreno, and Castaño 2010).

ROSPlan ROSPlan (Cashmore et al. 2015) is a frame-
work for task planning that describes a number of exchange-
able components and a set of message types to interconnect
these. Such components are, e.g., planner integration (prob-
lem generation, invocation, result parsing), and fact base
storage. The execution system is rather basic and hence
called plan dispatcher. After a plan has been generated, the
dispatcher publishes messages for each actions (one-by-one)
which must be interpreted and achieved through external
programs. Even though ROSPlan’s default planner POPF
produces temporal plans with concurrency, the current in-
ternal representation only yields sequential execution.4 The
dispatcher does not evaluate preconditions of actions during
execution and hence may invoke actions which cannot be ac-
complished. Effects of actions are not automatically applied
to the fact base, but the external action provider must do this.

CLIPS Agent The rule-based production system CLIPS
provides the basis for an incremental task-level reasoning
system (Niemueller, Lakemeyer, and Ferrein 2013). It does
not provide an explicit task specification language. Rather,
the behavior is defined in a knowledge-based reactive fash-
ion, where situation classifiers directly decide on the next
action to perform whenever the agent is currently idle. Ac-
tions are modeled as external functions and monitoring is
performed through rules observing updates to the fact base.
The system does not perform any planner integration.

CLIPS SMT A later revision of the aforementioned sys-
tem was extended to integrate with an SMT-based planning
system (Niemueller et al. 2017), that featured optimization
through on-line constraint adaptation. It featured an explicit
multi-actor plan representation that served as an interface
to separate the planner from the execution. Once a plan
is generated, macro operations from the plan are replaced

4Yet unreleased code in the development branch of ROS-
Plan (https://github.com/KCL-Planning/ROSPlan)
seems to improve this. However, we could not verify this in time.

by the respective sequence of actions. Then, action selec-
tion does not occur based on a situation classification as
with the CLIPS Agent, but rather based on the expanded
plan. A shortcoming of the actor-based plan representa-
tion is the need for synchronization constructs to model that
some plans may not progress until certain points have been
reached in other plans.
OpenPRS The Procedural Reasoning System (PRS) is
a high-level control and supervision framework to repre-
sent and execute plans and procedures in dynamic envi-
ronments (Ingrand et al. 1996).5 PRS has three main ele-
ments: a database containing facts representing the belief
about the world, a library of plans (or procedures) that de-
scribe a particular sequence or policy to achieve a certain
(sub-)goal, and a task graph which is a dynamic set of tasks
currently executing (Niemueller et al. 2016). Tasks are spec-
ified in terms of small programs (supporting loops, condi-
tionals, and recursion), called OPs. OPs have logic formulas
as activation conditions, that, if matched, invoke an OPs.
A specialty is that multiple OPs can be executed in paral-
lel. However, this can make proper plan design non-trivial
since conditions such as race conditions must be handled.
OpenPRS does not directly support planner integration, but
typically OPs (partial plans) are written (or graphically de-
signed) manually.
ActorSim ActorSim (Roberts et al. 2016) is an implemen-
tation of Goal-Task-Networks (GTN). Goals are considered
as a top-level construct that have a specific life cycle. Once
a goal is selected, it is expanded, which may invoke an ex-
ternal planner. However, ActorSim itself does not provide
a ready-to-use integration for planning systems. Expansion
generates a task, which is then executed through invoking
actions on the controlled system.
ASP-TBP A recent approach utilizes an extension of the
CLIPS Agent as an executive for time-bounded planning us-
ing Answer Set Programming (ASP) (Schaepers et al. 2018).
It generates plans with a time-limited lookahead (typically
up to 3 minutes) that already contains actor assignments for
each sub-task. The planner runs virtually continuously con-
current to execution. Whenever a new and better (according
to some metric) plan is found that is compatible with the
current execution state, the new plan is published through a
globally shared database. A simplified executive on the ex-
ecuting agents then retrieves new tasks from this database
when it becomes idle. The plan does contain expected task
durations allowing for reporting delays.
Kirk/RMPL The Reactive Model-based Programming
Language (RMPL) (Williams et al. 2003) provides the
means to describe rich control programs including loops
and conditionals. It also supports preemption of programs
by specifying necessary conditions during the execution of
some (partial) program. Furthermore, it supports concur-
rency and non-deterministic choice. RMPL is amenable
reactive planning. Kirk is an RMPL-based planner/execu-
tive (Kim, Williams, and Abramson 2001) that transform an
RMPL specification in a temporal plan network for inter-

5OpenPRS is the most widely available PRS version.



leaved planning and execution. There are no openly avail-
able implementations for RMPL or Kirk, which we therefore
could not evaluate first-hand.
GOLOG GOLOG (Levesque et al. 1997) is a high-level
programming language based on the Situation Calcu-
lus (McCarthy 1963; Reiter 2001). Similar to RMPL,
GOLOG allows loops and conditionals, and also supports
non-deterministic choice. GOLOG has been extended
for interleaved concurrency (De Giacomo, Lespérance,
and Levesque 2000), on-line execution (De Giacomo,
Lespérance, and Levesque 2000), and execution monitoring
(De Giacomo, Reiter, and Soutchanski 1998). GOLOG can
also use PDDL for planning (Claßen et al. 2012) with an
achieve operator that delegates search to a PDDL plan-
ner, and continual planning (Hofmann et al. 2016), which
interleaves planning with plan execution, plans for acquir-
ing missing knowledge, and monitors the environment for
unexpected events and exogenous actions.

2.2 CLIPS Rule-Based Production System
CLIPS (Wygant 1989) is a rule-based production system
using forward chaining inference based on the Rete algo-
rithm (Forgy 1982) consisting of three building blocks (Gi-
arratano 2007): a fact base or working memory, the knowl-
edge base, and an inference engine. Facts are basic forms
representing pieces of information in the fact base. They
usually adhere to structured types. The knowledge base
comprises heuristic knowledge in the form of rules, and pro-
cedural knowledge in the form of functions. Rules are a core
part of the production system. They are composed of an an-
tecedent and consequent. The antecedent is a set of condi-
tions, typically patterns which are a set of restrictions that
determine which facts satisfy the condition. If all conditions
are satisfied based on the existence, non-existence, or con-
tent of facts in the fact base the rule is activated and added
to the agenda. The consequent is a series of actions which
are executed for the currently selected rule on the agenda, for
example to modify the fact base. Functions carry procedural
knowledge and may have side effects. They can also be im-
plemented in C++. In our framework, we use them to utilize
the underlying robot software, for instance to communicate
with the reactive behavior layer described below. CLIPS’
inference engine combines working memory and knowledge
base performing fact updates, rule activation, and agenda ex-
ecution until stability is reached and no more rules are acti-
vated. Modifications of the fact base are evaluated if they
activate (or deactivate) rules from the knowledge base. Ac-
tivated rules are put onto the agenda. As there might be
multiple active rules at a time, a conflict resolution strategy
is required to decide which rule’s actions to execute first. In
our case, we order rules by their salience, a numeric value
where higher value means higher priority. If rules with the
same salience are active at a time, they are executed in the
order of their activation (Niemueller et al. 2016).

3 System Architecture and Models
The CLIPS Executive is integrated using the Fawkes robot
software framework. It consists of several components,

such as the CLIPS run-time environment, a PDDL-to-CLIPS
parser, a planner integration component, and a reactive be-
havior component.

Fawkes (Niemueller et al. 2010) is a component-based
software framework with a blackboard communication ar-
chitecture. It provides the basic building blocks for the
integrated system. The CLIPS environment and the plan-
ner component communicate through a robot memory based
on the MongoDB-driven robot database (Niemueller, Lake-
meyer, and Srinivasa 2012). The basic behaviors are pro-
vided through the Lua-based Behavior Engine (Niemueller,
Ferrein, and Lakemeyer 2009). It provides a development
and execution environment for skills modeled as hybrid state
machines and accessible through execution functions. Skills
can be structured hierarchically to enable building more
complex actions (which are still reactive and can only per-
form local choices).

3.1 Models
In the following, a number of different models with varying
scopes are necessary for the description of the PDDL inte-
gration. We briefly introduce each of these models.
Domain Model D The domain model is akin to a PDDL
domain and contains descriptions of operators (action tem-
plates), predicates, and object types. One of the most im-
portant aspects is that both, the planner and the CX, use the
same domain model.
Planner Model P The planner model contains the facts and
object instances the planner can represent and reason about.
In the case of PDDL, this is the set of initial facts and ob-
jects that will be stored in the problem file. For this paper,
we assume a symbolic model making the closed world as-
sumption.
Execution Model E The execution model is a superset of
(and thus extended) domain model. It may contain enriched
operator descriptions (for example mentioning effects only
relevant during execution) and designate sensed predicates
(cf. Sections 4 and 6).
World Model W The world model contains all relevant
information known about the internal and external environ-
ment. It is a superset of P; in addition to the facts needed
by the planner, it contains facts that are irrelevant for plan-
ning but used during execution, e.g., precise positions and
information about other robots. It features a richer represen-
tation supporting lists, numbers, symbols, and strings. Facts
in the world model are identified by a unique key. The world
model is the only interface to ingest information into the ex-
ecutive (aside from action feedback).

In short, E extends D with additional operators and op-
erator properties, while W extends P by additional facts
needed for execution. In other words, P is the restriction
of W to facts and objects required for planning. Models P
and W are synchronized automatically, that is, any update
in W is reflected in P, and vice versa. The planner does not
modify P directly, rather, it uses it to formulate the planning
problem. Both D and E are generated from the PDDL do-
main description, and additional properties in E are asserted
by the domain designer.



1 (at ?r -robot ?m -location ?side -side)
2 (at R-1 C-BS INPUT)

Listing 1: PDDL predicate declaration and instance.

1 (deftemplate domain-predicate
2 (slot name (type SYMBOL)
3 (default ?NONE))
4 (slot sensed (type SYMBOL)
5 (allowed-values FALSE TRUE))
6 (multislot param-names (type SYMBOL))
7 (multislot param-types (type SYMBOL))
8 )
9

10 (domain-predicate
11 (name at) (sensed FALSE)
12 (param-names r m side)
13 (param-types robot location side)
14 )

Listing 2: CLIPS template and instance for predicates.

4 PDDL Domain Representation in CLIPS
Planning and execution are based on a common domain
model. The CX execution model is derived directly from this
domain model and is specified as a PDDL domain. A dedi-
cated parser reads the domain file and asserts the necessary
structures in CLIPS. In the following, we give an overview
of these structures.

Predicates Predicates carry information about the world.
PDDL uses a symbolic representation. An example repre-
senting a robot’s position is shown in Listing 1 (l. 1). This is
translated into a CLIPS fact using the template in Listing 2
(ll. 1–8). The name, which may not be empty, as indicated
by the special ?NONE default value, is simply the head of the
PDDL predicate. The multislot param-names is the list of
parameter names defined in the PDDL predicate. The mul-
tislot param-types is the list of the respective parameter
types. An example for the representation of the PDDL at
predicate is shown in lines 10–14.

The slot sensed is an extension for the execution model
E. If set to TRUE, it indicates that this is a predicate under
exogenous control, i.e., it is not directly influenced by the
agent but rather update from an external entity. Therefore,
the value of a sensed predicate is not changed when applying
the effects of an action (cf. Sensed Effects in Section 6).

1 (deftemplate domain-fact
2 (slot name (type SYMBOL)
3 (default ?NONE))
4 (multislot param-values)
5 )
6
7 (domain-fact (name at)
8 (param-values R-1 C-BS INPUT)
9 )

Listing 3: CLIPS template and instance for facts.

1 (deftemplate domain-precondition
2 (slot name (type SYMBOL)
3 (default-dynamic (gensym*)))
4 (slot part-of (type SYMBOL))
5 (slot type (type SYMBOL)
6 (allowed-values conjunction negation))
7 (slot grounded (type SYMBOL)
8 (allowed-values FALSE TRUE))
9 (slot grounded-with (type INTEGER))

10 (slot is-satisfied (type SYMBOL)
11 (allowed-values FALSE TRUE))
12 )
13 (deftemplate domain-atomic-precondition
14 (slot name (type SYMBOL)
15 (default-dynamic (gensym*)))
16 (slot part-of (type SYMBOL))
17 (slot predicate (type SYMBOL))
18 (multislot param-names (type SYMBOL))
19 (multislot param-constants)
20 (multislot param-values)
21 (slot grounded (type SYMBOL)
22 (allowed-values FALSE TRUE))
23 (slot grounded-with (type INTEGER))
24 (slot is-satisfied (type SYMBOL)
25 (allowed-values FALSE TRUE))
26 )

Listing 4: CLIPS templates for operator preconditions.

A ground instance of a predicate (e.g., an initial fact) is
represented as domain-fact (Listing 3, ll. 1–5). An in-
stance stating that robot R-1 is at the INPUT side of the ma-
chine C-BS is shown in lines 7–9 (akin to Listing 1, line 2).

Actions An action is represented by a number of tem-
plates, one for the operator name and parameters, and sev-
eral for the action’s precondition and its effects. As CLIPS
does not support nested templates, the precondition of an ac-
tion is split into several facts. A domain-precondition is
a non-atomic precondition, i.e., a conjunction or a negation,
with sub-conditions. A domain-atomic-precondition

is an atomic precondition and always refers to a spe-
cific predicate. The PDDL precondition is decomposed
into a tree of preconditions. The root is always non-
atomic, typically a conjunction. Atomic preconditions can
only be a child of compound preconditions. Leaves which
are atomic preconditions represent the respective predi-
cate requirement. Conjunctive leaves are considered to
be TRUE, negation leaves evaluate to FALSE. Addition-
ally, a domain-precondition can also be part of an-
other domain-precondition, which allows nested pre-
conditions. The templates of the preconditions are shown
in Listing 4. A domain-precondition has a name,
which is automatically set to a unique name if no name
is given. The name is used to specify the precondi-
tion as a parent condition of another precondition, which
is specified with the slot part-of. A non-atomic pre-
condition can be of type conjunction or negation.
A domain-atomic-precondition always refers to a
predicate and has parameter names and constants, where



1 (deftemplate domain-effect
2 (slot name (type SYMBOL)
3 (default-dynamic (gensym*)))
4 (slot part-of (type SYMBOL))
5 (slot predicate (type SYMBOL))
6 (multislot param-names)
7 (multislot param-values)
8 (multislot param-constants)
9 (slot type (type SYMBOL)

10 (allowed-values POSITIVE NEGATIVE))
11 )

Listing 5: The template definition for an action effect.

1 (:action enter-field
2 :parameters (
3 ?r - robot ?team-color - team-color)
4 :precondition (and
5 (location-free START INPUT)
6 (robot-waiting ?r))
7 :effect (and (entered-field ?r)
8 (at ?r START INPUT)
9 (not (location-free START INPUT))

10 (not (robot-waiting ?r)) (can-hold ?r))
11 )

Listing 6: The PDDL operator enter-field.

the names must be a subset of the parameter names of the
operator.

An action’s effect is assumed to be a set of literals similar
to STRIPS effects. The definition of the template is shown
in Listing 5. Similar to preconditions, the effect name is au-
tomatically set to a unique name if no name is given. An
effect must always be part of an operator and refer to a pred-
icate. Similar to an atomic precondition, it has parameter
names, values, and constants. An effect can be positive or
negative.

The translation of the enter-field PDDL opera-
tor (Listing 6) is shown in Listing 7. The precon-
dition of the PDDL action is represented by a con-
junctive domain-precondition and two template facts
of type domain-atomic-precondition. Similarly,
the effect of the action is split into five instances of
domain-effect, one for each atomic effect. The precon-
dition enter-field11 on the predicate location-free

shows how constants are translated: The multislot
param-names contains the two placeholder names c, indi-
cating constant values. The multislot param-constants is
set to (START INPUT). Note that the parameter name is not
used but is only a placeholder so the number of parameters
of the precondition matches the number of parameters of the
predicate. If a parameter is not a constant, then the respec-
tive value in param-constants is set to nil, as shown in
the effect gen65 on the predicate at.

5 Planner Integration
The handling of the planning system is implemented as a
separate planner component. It handles PDDL problem
generation, invokes a planner, and parses the output to re-

1 (domain-operator (name enter-field)

2 (param-names r team-color)

3 (param-types robot team-color))

4 (domain-precondition (part-of enter-field)

5 (name enter-field1) (type conjunction))

6 (domain-atomic-precondition (part-of enter-field1)

7 (name enter-field11) (predicate location-free)

8 (param-names c c) (param-constants START INPUT))

9 (domain-atomic-precondition (part-of enter-field1)

10 (name enter-field12) (predicate robot-waiting)

11 (param-names r) (param-constants nil))

12 (domain-effect (name gen64) (part-of enter-field)

13 (predicate entered-field) (param-names r))

14 (domain-effect (name gen65) (part-of enter-field)

15 (predicate at) (param-names r c c)

16 (param-constants nil START INPUT))

17 (domain-effect (name gen66) (part-of enter-field)

18 (predicate location-free) (param-names c c)

19 (param-constants START INPUT)

20 (type NEGATIVE))

21 (domain-effect (name gen67) (part-of enter-field)

22 (predicate robot-waiting) (param-names r)

23 (type NEGATIVE))

24 (domain-effect (name gen68) (part-of enter-field)

25 (predicate can-hold) (param-names r))

Listing 7: The operator enter-field in CLIPS
(default values are omitted).

trieve the plan. It therefore provides an abstraction of the
underlying PDDL planner. The component currently sup-
ports FF (Hoffmann and Nebel 2001) and FASTDOWN-
WARD (Helmert 2006), among others. As these planners
produce sequential plans, we focus on sequential planning.
However, the framework can be easily extended to partially
ordered plans with a modified action selection (see Sec-
tion 6.1).

Planner Invocation The executive continuously synchro-
nizes the world model with a robot memory based on Mon-
goDB (Niemueller, Lakemeyer, and Srinivasa 2012). The
planner model (as part of the world model) is therefore avail-
able in the database. To initiate a planning process, the ex-
ecutive stores the goal to the robot memory and invokes the
planner. The planner retrieves model and goal and dynam-
ically generates the PDDL problem from using a (domain-
specific) template. This way, the planner always plans with
the same initial state as the CLIPS agent currently operates
with. The PDDL domain is static and is the same domain
that is parsed by the CLIPS agent. The CLIPS function (
pddl-call ?goal) initiates this process.

The planner stores the generated plan in the robot mem-
ory, from which the executive retrieves it. It then asserts a
plan fact along with a number of plan-action facts.

Action Grounding We differentiate operator definitions
and instances thereof, i.e., grounded actions. A grounded
action is defined by the template plan-action, as shown
in Listing 8. A plan-action has a unique numeric id,
which is used to impose an ordering of the actions in a plan.



1 (deftemplate plan-action
2 (slot id (type INTEGER))
3 (slot action-name (type SYMBOL))
4 (multislot param-names)
5 (multislot param-values)
6 (slot status (type SYMBOL)
7 (allowed-values FORMULATED PENDING
8 WAITING RUNNING EXECUTION-SUCCEEDED
9 SENSED-EFFECTS-WAIT

10 SENSED-EFFECTS-HOLD EFFECTS-APPLIED
11 FINAL EXECUTION-FAILED FAILED))
12 (slot executable (type SYMBOL)
13 (allowed-values FALSE TRUE))
14 )

Listing 8: The template definition for an action.

1 (defrule domain-check-atomic-precondition
2 ?precond <-
3 (domain-atomic-precondition
4 (is-satisfied FALSE)
5 (grounded TRUE)
6 (predicate ?pred)
7 (param-values $?params))
8 (domain-fact (name ?pred)
9 (param-values $?params))

10 =>
11 (modify ?precond (is-satisfied TRUE))
12 )

Listing 9: The rule to check whether an atomic
precondition is satisfied.

The slot action-name refers to a domain-operator,
param-names and param-values denote the parameters
of the action. The possible states are detailed in Section 6.

Given a plan-action fact, we need to ground the ac-
tion’s precondition to check whether the action is exe-
cutable. In order to do so, an atomic precondition is
grounded by matching the parameter names in the precon-
dition with the parameter names of the grounded action and
copying their values from the action to the precondition. A
non-atomic precondition is grounded by grounding all its
sub-conditions.

After grounding the action’s precondition and all the sub-
conditions recursively, we can check whether an action is ex-
ecutable. Starting with the atomic preconditions, we check
whether a corresponding domain-fact with the same pred-
icate name and the same parameter values exists. If so, the
atomic precondition is satisfied. The CLIPS rule doing this
check is shown in Listing 9. We then proceed with the parent
preconditions: If the parent is a negation, then it is satisfied
if and only if its child is not satisfied. If it is a conjunc-
tion, then all the children must be satisfied. We continue
bottom-up until the root precondition is reached. If the root
is satisfied, then the action is executable.

6 Plan Execution and Monitoring
Based on the grounded plan, the executive starts evaluation
of the plan. Note that after each action execution, the re-

FORMULATED

PENDING

WAITING

RUNNING

EXECUTION-SUCCEEDED

SENSED-EFFECTS-WAIT

SENSED-EFFECTS-HOLD

EFFECTS-APPLIED

FINAL

EXECUTION-FAILED

FAILED

Select

Executable

BE starts execution

Skill failed

Retry

Skill succeeded

wait-sensed

Sensed effects occurred

Apply effects

!wait-sensed

Expected effects
not observed

Figure 1: The possible states of a plan-action and the
transitions between those states.

maining plan actions are grounded again, based on the then
available information in the planner model. In the following,
we describe the execution procedure in more detail.

6.1 Plan Execution
Each action in the plan is assigned a state machine as shown
in Figure 1. Initially, all actions of the plan are set in
the FORMULATED state. The action selection is responsible
for selecting the action to execute, changing its state from
FORMULATED to SELECTED. The current version of the sys-
tem supports sequential plans. When no action is being ex-
ecuted, the next action is determined by the action which is
executable, and for which there is no other pending action
with a lower id (cf. Section 5). If no pending action is exe-
cutable, the agent waits until an exogenous event causes an
update to the planner model rendering an action executable
(also cf. Section 6.2).

Any action in the current plan is checked whether it is ex-
ecutable by checking whether its precondition is satisfied.
If a pending action is executable, the action is marked as
WAITING. There are two sub-systems which can process
such actions. The first is directly inside the executive, and is
used in particular for communication acts. The second inter-
acts with the physical world through the Lua-based Behavior
Engine (BE) (cf. Section 3). The CX is initially configured
with a domain-specific set of mappings from operators to
skill execution strings that the BE can interpret.

Once the BE starts executing a skill, the state of the action
changes to RUNNING. The executive then awaits for the skill
to finish. Depending on the outcome of the skill execution,



the state of the action is set to either EXECUTION-FAILED
or EXECUTION-SUCCEEDED. An action may be retried

(cf. Section 6.2), otherwise it is FAILED. If the execution
was successful, then the next state depends on whether the
executed action has any sensed effects, i.e., effects involving
sensed predicate (see below). Eventually, the action transi-
tions to SENSED-EFFECTS-HOLD, asserts all other effects in
one transaction, and transitions to EFFECTS-APPLIED. This
enables additional steps such as retracting all precondition
groundings and where execution monitoring may perform
an analysis of the outcome. Then, the action transitions to
FINAL.

Sensed Effects Some predicates may be configured to be
sensed predicates, i.e., predicates which are set by exoge-
nous action not under the control of the agent. This is a
deliberate extension in the execution model, as it covers
an important aspect often found in real-world domains, es-
pecially in robotics. During planning, such a predicate is
treated as any other predicate. Actions, for which its effects
involve sensed predicates, can be configured in two ways.
They may either wait for those effects (sensed-wait slot
is set to TRUE) or simply ignore the effects altogether. If the
action waits for the effects in the SENSED-EFFECTS-WAIT
state, the executive monitors updates to the planner model.
Once all expected sensed effects are observed, the action
transitions to the SENSED-EFFECTS-HOLD mode. If this
never happens (i.e., an expected effect never occurs), execu-
tion monitoring will eventually let the action fail (see Sec-
tion 6.2). If no sensed effect exists or if the action is con-
figured not to wait for sensed effects, then the action state
is directly set to SENSED-EFFECTS-HOLD. After that, the
non-sensed effects of the action are applied by grounding
the operator effects with the action’s arguments, and then
asserting and retracting domain-fact facts.

Note that if an action is configured to not wait on sensed
effects, then the semantics of the action execution and the
PDDL domain model may differ. In particular, an effect that
is specified in the PDDL domain does not necessarily hold
after executing the action if it is a sensed effect and the ac-
tion does not wait on the sensed effect. However, this is use-
ful for actions that have a delayed effect, e.g., an instruction
message to a machine that eventually finishes processing the
instruction and switches to a state READY. While this effect
needs to be modeled in the domain to allow reasoning about
the agent’s actions, we do not want to wait for the machine
to finish processing. Instead, the agent should continue with
the plan until one of the action’s requires the machine to be
in the state READY, in which case the agent will wait until
the precondition is satisfied.

An execution trace of a plan including action grounding,
precondition check, and effect application, is shown in Fig-
ure 2 in the Appendix.

6.2 Execution Monitoring
Execution monitoring (XM) is the process of observing the
system while performing an action. It is an important aspect
of robust execution systems. The CLIPS Executive is partic-

ularly well-suited for this task since all information is avail-
able in the fact base common to all parts of the program. The
explicit modeling of plans and action execution states pro-
vide the execution monitoring with integration hooks. For
example, if an action enters the EXECUTION-FAILED state,
based on additional information the XM may or may not in-
dicate to retry an action. By default, it tries three times. It
can also easily impose temporal monitoring, for example if
the agent is stuck for a certain period in time without the
next action to be executable, the XM can determine the plan
to have failed and trigger re-planning.

7 Conclusion
In this paper, we introduce a PDDL plan executive based
on the CLIPS rule-based production system. The executive
is capable of executing a PDDL plan by invoking a plan-
ner, translating the plan into its internal plan representation,
checking each action’s executability, executing an action by
means of a Behavior Engine, and applying effects based on
the execution model. We provided a detailed description
of the domain and plan representation used by the execu-
tive and described four different models for the integration
of a PDDL planner. The domain model describes the op-
erators, predicates, and object types of the PDDL domain.
The execution model extends the domain model by addi-
tional aspects of action execution such as delayed effects,
exogenous actions, and sensed predicates. The world model
contains all relevant information known about the environ-
ment, while the planner model is a subset of the world model
only concerned with the facts and objects necessary for plan-
ning. During execution, the domain model allows to verify
that the current plan continues to be executable by check-
ing the actions’ preconditions, while continuously updating
the world model based on sensing. If an action fails or an
unexpected event occurs, the CX provides monitoring capa-
bilities to recover, which is aided by the explicit modeling
of plans, actions, and action execution states.

Acknowledgments
T. Niemueller was supported by the German Na-
tional Science Foundation (DFG) research unit FOR
1513 on Hybrid Reasoning for Intelligent Systems
(http://www.hybrid-reasoning.org).

T. Hofmann was supported by the German National Sci-
ence Foundation (DFG) grant GL-747/23-1 on Constraint-
based Transformations of Abstract Task Plans into Exe-
cutable Actions for Autonomous Robots.

We thank the anonymous reviewers for their insightful
comments and questions which helped clarify several as-
pects of this paper.

References
Cashmore, M.; Fox, M.; Long, D.; Magazzeni, D.; Ridder,
B.; Carrera, A.; Palomeras, N.; Hurtos, N.; and Carreras, M.
2015. ROSPlan: Planning in the robot operating system. In
25th Int. Conf. on Automated Planning and Scheduling.



Claßen, J.; Röger, G.; Lakemeyer, G.; and Nebel, B. 2012.
PLATAS — integrating planning and the action language
Golog. KI - Künstliche Intelligenz 26(1).
De Giacomo, G.; Lespérance, Y.; and Levesque, H. J. 2000.
ConGolog, a concurrent programming language based on
the situation calculus. Artificial Intelligence 121.
De Giacomo, G.; Reiter, R.; and Soutchanski, M. 1998.
Execution Monitoring of High-Level Robot Programs. Pro-
ceedings of the 6th International Conference on Knowledge
Representation and Reasoning (KR).
Forgy, C. L. 1982. Rete: A fast algorithm for the many
pattern/many object pattern match problem. Artificial Intel-
ligence 19(1).
Fox, M., and Long, D. 2006. Modelling Mixed Discrete-
continuous Domains for Planning. Journal for Artificial In-
telligence Research 27(1).
Giarratano, J. C. 2007. CLIPS Reference Manuals.
http://clipsrules.sf.net/OnlineDocs.html.
Helmert, M. 2006. The Fast Downward Planning System.
Journal of Artificial Intelligence Research (JAIR) 26.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research (JAIR) 14.
Hofmann, T.; Niemueller, T.; Claßen, J.; and Lakemeyer, G.
2016. Continual Planning in Golog. In Proceedings of the
30th Conference on Artificial Intelligence (AAAI).
Ingrand, F.; Chatila, R.; Alami, R.; and Robert, F. 1996.
PRS: A High Level Supervision and Control Language for
Autonomous Mobile Robots. In IEEE Int. Conf. on Robotics
and Automation (ICRA), volume 1.
Kim, P.; Williams, B. C.; and Abramson, M. 2001. Exe-
cuting reactive, model-based programs through graph-based
temporal planning. In 17th International Joint Conference
on Artificial Intelligence (IJCAI).
Levesque, H. J.; Reiter, R.; Lesperance, Y.; Lin, F.; and
Scherl, R. B. 1997. GOLOG: a logic programming lan-
guage for dynamic domains. Journal of Logic Programming
31(1-3).
McCarthy, J. 1963. Situations, actions, and causal laws.
Technical report, DTIC Document.
Muñoz, P.; R-Moreno, M. D.; and Castaño, B. 2010. In-
tegrating a pddl-based planner and a plexil-executor into
the ptinto robot. In Trends in Applied Intelligent Systems
(IEA/AIE).
Niemueller, T.; Ferrein, A.; Beck, D.; and Lakemeyer, G.
2010. Design Principles of the Component-Based Robot

Software Framework Fawkes. In Int. Conference on Simu-
lation, Modeling, and Programming for Autonomous Robots
(SIMPAR).
Niemueller, T.; Zwilling, F.; Lakemeyer, G.; Löbach, M.;
Reuter, S.; Jeschke, S.; and Ferrein, A. 2016. Industrial
Internet of Things: Cybermanufacturing Systems. Springer.
chapter Cyber-Physical System Intelligence – Knowledge-
Based Mobile Robot Autonomy in an Industrial Scenario.
Niemueller, T.; Lakemeyer, G.; Leofante, F.; and Abraham,
E. 2017. Towards clips-based task execution and monitor-
ing with smt-based decision optimization. In Workshop on
Planning and Robotics (PlanRob) at International Confer-
ence on Automated Planning and Scheduling (ICAPS).
Niemueller, T.; Ferrein, A.; and Lakemeyer, G. 2009. A
Lua-based Behavior Engine for Controlling the Humanoid
Robot Nao. In RoboCup Symposium 2009.
Niemueller, T.; Lakemeyer, G.; and Ferrein, A. 2013. Incre-
mental Task-level Reasoning in a Competitive Factory Au-
tomation Scenario. In AAAI Spring Symposium - Designing
Intelligent Robots: Reintegrating AI.
Niemueller, T.; Lakemeyer, G.; and Srinivasa, S. 2012. A
Generic Robot Database and its Application in Fault Analy-
sis and Performance Evaluation. In IEEE International Con-
ference on Intelligent Robots and Systems (IROS).
Reiter, R. 2001. Knowledge in action: logical foundations
for specifying and implementing dynamical systems. MIT
Press.
Roberts, M.; Alford, R.; Shivashankar, V.; Leece, M.;
Gupta, S.; and Aha, D. W. 2016. ACTORSIM: A toolkit
for studying goal reasoning, planning, and acting. In WS on
Planning and Robotics (PlanRob) at International Confer-
ence on Automated Planning and Scheduling (ICAPS).
Schaepers, B.; Niemueller, T.; Lakemeyer, G.; Gebser, M.;
and Schaub, T. 2018. Asp-based time-bounded planning for
logistics robots. In International Conference on Automated
Planning and Scheduling (ICAPS).
Verma, V.; Jónsson, A.; Pasareanu, C.; and Iatauro, M. 2006.
Universal Executive and PLEXIL: Engine and Language for
Robust Spacecraft Control and Operations. In AIAA Space.
Williams, B. C.; Ingham, M. D.; Chung, S. H.; and Elliott,
P. H. 2003. Model-based Programming of Intelligent Em-
bedded Systems and Robotic Space Explorers. Proceedings
of the IEEE 91(1).
Wygant, R. M. 1989. CLIPS: A powerful development and
delivery expert system tool. Computers & Industrial Engi-
neering 17(1–4).



Appendix

1 ==> f-1199 (domain-fact (name location-free) (param-values START INPUT))

2 ==> f-1286 (domain-fact (name robot-waiting) (param-values R-1))

3 ==> f-17314 (plan-action (id 2) (action-name enter-field) (param-names r team-color) (param-values R-1 CYAN))

4 FIRE 221 domain-ground-action-precondition: *,f-17314,f-553,*
5 ==> f-17315 (domain-precondition (part-of enter-field) (grounded-with 2) (name enter-field1) (type conjunction))

6 FIRE 222 domain-ground-atomic-precondition: *,f-17314,f-17315,f-555,*
7 ==> f-17316 (domain-atomic-precondition (part-of enter-field1) (grounded-with 2) (name enter-field12) (predicate

robot-waiting) (param-names r) (param-values R-1))

8 FIRE 223 domain-check-if-atomic-precondition-is-satisfied: f-17316,f-1286

9 <== f-17316 (domain-atomic-precondition (name enter-field12) (is-satisfied FALSE))

10 ==> f-17317 (domain-atomic-precondition (name enter-field12) (is-satisfied TRUE))

11 FIRE 224 domain-ground-atomic-precondition: *,f-17314,f-17317,f-554,*
12 ==> f-17318 (domain-atomic-precondition (part-of enter-field1) (grounded-with 2) (name enter-field11) (predicate

location-free) (param-names c c) (param-values START INPUT) (param-constants START INPUT) (is-satisfied FALSE))

13 FIRE 225 domain-check-if-atomic-precondition-is-satisfied: f-17318,f-1199

14 <== f-17318 (domain-atomic-precondition (name enter-field11) (is-satisfied FALSE))

15 ==> f-17319 (domain-atomic-precondition (name enter-field11) (is-satisfied TRUE))

16 FIRE 226 domain-check-if-conjunctive-precondition-is-satisfied: f-17315,*,*
17 <== f-17315 (domain-precondition (name enter-field1) (type conjunction) (is-satisfied FALSE))

18 ==> f-17320 (domain-precondition (name enter-field1) (type conjunction) (is-satisfied TRUE))

19 FIRE 227 domain-check-if-action-is-executable: f-17314,f-17320

20 <== f-17314 (plan-action (id 2) (action-name enter-field) (status FORMULATED) (executable FALSE))

21 ==> f-17321 (plan-action (id 2) (action-name enter-field) (status FORMULATED) (executable TRUE))

22 FIRE 357 action-selection-select: f-17321,f-17075,f-17102,*,*
23 <== f-17321 (plan-action (id 2) (action-name enter-field) (status FORMULATED) (executable TRUE))

24 ==> f-17678 (plan-action (id 2) (action-name enter-field) (status PENDING) (executable TRUE))

25 FIRE 358 skill-action-start: f-17678,f-295,*,f-1419

26 Calling skill ’drive_into_field{team="CYAN"}’

27 <== f-17678 (plan-action (id 2) (action-name enter-field) (status PENDING) (executable TRUE))

28 ==> f-17680 (plan-action (id 2) (action-name enter-field) (status WAITING) (executable TRUE))

29 ClipsExecutiveThread wants me to execute ’drive_into_field{team="CYAN"}’

30 GOTO: executing goto{place = C-ins-out}

31 Skill enter-field is S_RUNNING, was: S_IDLE

32 Action enter-field is running

33 <== f-17680 (plan-action (id 2) (action-name enter-field) (status WAITING) (executable TRUE))

34 ==> f-17685 (plan-action (id 2) (action-name enter-field) (status RUNNING) (executable TRUE))

35 Skill enter-field is S_FINAL, was: S_RUNNING

36 FIRE 3 skill-action-final: f-17681,f-17685,f-17859

37 Execution of enter-field completed successfully

38 <== f-17685 (plan-action (id 2) (action-name enter-field) (status RUNNING) (executable TRUE))

39 ==> f-17860 (plan-action (id 2) (action-name enter-field) (status EXECUTION-SUCCEEDED) (executable TRUE))

40 FIRE 4 domain-effects-check-for-sensed: f-17860,f-552

41 <== f-17860 (plan-action (id 2) (action-name enter-field) (status EXECUTION-SUCCEEDED) (executable TRUE))

42 ==> f-17861 (plan-action (id 2) (action-name enter-field) (status SENSED-EFFECTS-HOLD) (executable TRUE))

43 FIRE 5 domain-effects-apply: f-17861,f-552

44 ==> f-17862 (domain-fact (name entered-field) (param-values R-1))

45 ==> f-17863 (domain-fact (name at) (param-values R-1 START INPUT))

46 <== f-1199 (domain-fact (name location-free) (param-values START INPUT))

47 <== f-1286 (domain-fact (name robot-waiting) (param-values R-1))

48 ==> f-17864 (domain-fact (name can-hold) (param-values R-1))

49 <== f-17861 (plan-action (id 2) (action-name enter-field) (status SENSED-EFFECTS-HOLD) (executable TRUE))

50 ==> f-17865 (plan-action (id 2) (action-name enter-field) (status EFFECTS-APPLIED) (executable TRUE))

51 <== f-17865 (plan-action (id 2) (action-name enter-field) (status EFFECTS-APPLIED) (executable TRUE))

52 ==> f-17915 (plan-action (id 2) (action-name enter-field) (status FINAL) (executable TRUE))

Figure 2: An abbreviated execution trace for executing a plan that contains the action enter-field. The initial world model
is shown in lines 1-2. In lines 4-21, the precondition is grounded and checked and the action is marked as executable. In
lines 22-39, the action is executed with the Behavior Engine. In lines 40-51, the effects of the action are applied. At the end,
the action is marked as FINAL.


