
Constraint-Based Online Transformation of
Abstract Plans into Executable Robot Actions

Till Hofmann,1 Victor Mataré,2 Stefan Schiffer,1,2

Alexander Ferrein,2 Gerhard Lakemeyer1

1Knowledge-Based Systems Group,
RWTH Aachen University, 52056 Aachen, Germany

2Mobile Autonomous Systems and Cognitive Robotics,
FH Aachen University of Applied Sciences, 52066 Aachen, Germany

Abstract

In this paper, we are concerned with making the execution of
abstract action plans for robotic agents more robust. To this
end, we propose to model the internals of a robot system and
its ties to the actions that the robot can perform. Based on
these models, we propose an online transformation of an ab-
stract plan into executable actions conforming with system
specifics. With our framework, we aim to achieve two goals.
First, modeling the system internals is beneficial in its own
right in order to achieve long term autonomy, system trans-
parency, and comprehensibility. Second, separating the sys-
tem details from determining the course of action on an ab-
stract level leverages the use of planning for actual robotic
systems.

Introduction

Despite promising advances in planning systems, they see
surprisingly little use in actual robotics environments. We
believe this is because solving a planning task by itself is
not sufficient to accomplish high-level behavior control of a
robotic system. For one, the robot’s platform (i.e., its hard-
ware and low-level software components) often requires ad-
ditional constraints that are ignored during planning, e.g.,
a domestic service robot participating in RoboCup@Home
(Wisspeintner et al. 2009) must calibrate its arm before per-
forming any manipulation tasks. During planning, we do not
want to plan for all the requirements of the underlying plat-
form, as this would increase the problem size significantly
and would make it infeasible in practice. However, ignoring
those constraints at the behavior level and dealing with them
at the lower levels is often impossible, because platform con-
straints may entail changes to the action plan.

Another reason for such a separation of high-level be-
havior and low-level platform is a design problem: When
modelling the domain, an agent programmer usually does
not want to deal with the robot platform. On the other
hand, a platform designer should not need to consider and
adapt the high-level behavior when modifying the platform.
Also, a robot often has to deal with failed actions, unex-
pected changes, and exogenous events. Thus, a considerable
amount of monitoring is required when executing a high-
level plan on a robot.

For these reasons, we propose a framework that allows the
modelling of the robot platform and its constraints indepen-

dent of the behavioral component. While designing the plat-
form, the user designs a self model of the robot and defines
all the constraints of the platform. The world model of the
agent can be designed without taking low-level constraints
into account. During execution, the abstract action plan is
transformed into a concrete executable plan that satisfies the
constraints of the lower levels.

To actually achieve a separation between the problem do-
main and platform-related execution concerns, the platform
needs a certain degree of “self-awareness” in terms of its
components, their capabilities, their states and their inter-
dependencies. Our goal in this paper is to sketch out re-
quirements for a logically founded constraint language that
can be used by platform experts to explicitly model compo-
nent state transitions, dependencies among them, error con-
ditions and possible recovery strategies, including the po-
tential need for human assistance. The result is an agent
system capable of self-maintenance by generating platform-
specific monitoring and recovery strategies from the plat-
form model and a platform-independent action plan. This
eliminates much of the expert intervention that is required
to keep robots running in dynamic domains, while provid-
ing a generic framework that helps in decoupling strategic
decision-making from any platform details.

Foundations & Related Work

Especially the research into planning systems that is fo-
cused on temporal coordination of (concurrent) actions is of
particular interest to our endeavour (Tsamardinos, Muscet-
tola, and Morris 1998; Jónsson et al. 2000; Kim, Williams,
and Abramson 2001; Lemai and Ingrand 2004). In theory,
it would allow generalizing both the domain logic and the
platform details as a temporal planning problem.

Temporal optimization and parallelization of platform-
dependent operations is also being performed successfully
at the task execution level. Keith et al. (2009) employ a
temporal network that describes platform constraints to re-
order and optimize the manipulator trajectories specified
by a sequential plan. Konečnỳ et al. (2014) separate the
strategic planning layer that only handles an abstract do-
main conceptualization from the detailed execution strategy
that makes a plan executable on a real robot. However, the
Consistency Based Execution Monitoring directly maps ab-
stract, but fully grounded plan elements to a domain-specific
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execution strategy, without specifying an explicit platform
model.

Kunze, Roehm, and Beetz (2011) introduce the Semantic
Robot Description Language (SRDL) to bridge the gap be-
tween purely kinematic description languages and the more
abstract level at which task specifications are usually for-
mulated. They leverage the Web Ontology Language (Bech-
hofer et al. 2004) to model how domain-specific actions
depend on platform-specific components that are required
to realize them. Waibel et al. (2011) use SRDL to imple-
ment a shared knowledge base that allows robots to improve
their search and execution strategies with previous observa-
tions possibly made by other robots. In this case, the knowl-
edge base covers both platform-specific and domain-specific
knowledge within a common deduction engine based on De-
scription Logic (Baader 2003). The works based on SRDL
are related to our work in their purpose, but differ signifi-
cantly in that the SRDL model is purely a translation layer
that sits between the abstract action plan and the executive
layer. As such, SRDL specifications cannot be used to mod-
ify execution strategies at runtime, and thus cannot be used
to dynamically deduce error recovery strategies. Mansouri
and Pecora (2016) describe a constraint-based approach to
hybrid reasoning with a meta-CSP that describes the differ-
ent types of knowledge. The CSP is solved by a meta-solver
that combines different kinds of reasoners. CHIMP (Stock et
al. 2015) uses HTNs to solve such constraint-based hybrid
reasoning tasks. HTN-based task decomposition approaches
often model platform details as part of the planning prob-
lem. Dvorák et al. (2014) limit the problem size by delegat-
ing execution monitoring to a PRS subsystem with a simple
success/failure interface.

Based on the Situation Calculus (McCarthy and Hayes
1969), the action language GOLOG allows a programmer to
intermix imperative programming with planning on a logi-
cally formulated domain model (Levesque and Lakemeyer
2008). READYLOG (Ferrein and Lakemeyer 2008) extends
the search functionality of GOLOG to allow for decision-
theoretic planning. Finzi and Pirri (2005) provide a theo-
retical integration of the Situation Calculus with temporal
constraints. De Giacomo, Reiter, and Soutchanski (1998)
define an execution monitor in Golog that allows to re-
act to unexpected changes during execution. Hofmann et
al. (2016) interleave PDDL-based planning with Golog-
based execution for monitoring purposes. Schiffer, Wort-
mann, and Lakemeyer (2010) describe an online transforma-
tion of a READYLOG program by inserting actions to satisfy
qualitative temporal platform-specific constraints, under the
assumption that agent domain and platform domain are dis-
junct.

Approach

Our goal is to design a framework that allows the user to
formulate a platform constraint model that describes inter-
nal and external dependencies of component states, both in
terms of hardware and software. An agent framework can
then turn an abstract plan into a platform-specific execution
and monitoring strategy that satisfies these constraints. This

Off

Ready for Calibration

Error

Calibrating Ready Parked

Busy

calibrate()
[4, 5]s park()

move()[0, 10]s

move()

Figure 1: A finite state machine as a platform model for
the Katana arm with three types of transitions: agent actions
(black/solid), system events (blue/dotted), exogenous events
(red/dashed). The edges are annotated with their action and
expected time bounds.

allows a separation of the high-level program from the spe-
cific platform properties while complying with the platform
constraints. In the following, we present the different com-
ponents of such a framework.

Platform Models

Figure 1 shows an example for a model of a robotic manip-
ulator arm, the Katana. Before the Katana arm can be used,
it needs to be calibrated. Initially, the arm is turned off. It
can only start its calibration process from a specific cali-
bration position, so a human assistant must move the arm
into the right position and then turn it on, which brings the
arm into the state Ready for Calibration. From that state, the
agent can decide to start the calibration. Note that this usu-
ally does not happen automatically, because the agent first
has to make sure that it is in a location that allows an arm
calibration, and second it may not need the arm at all. Since
calibration is time-consuming, it should only be done if the
arm is actually required. When the calibration is finished,
the component driver triggers a transition to either the Error
state or the Ready state. Similar to Schiffer, Wortmann, and
Lakemeyer (2010), we model system components as state
automata. But as the example in Fig. 1 shows, we need to
differentiate between different kinds of transitions: 1. ac-
tions by the agent (black), 2. events triggered by the system
(blue), 3. exogenous events (red).

Suitable Automata Models The platform model shown in
Figure 1 is a finite state automaton with multiple edge types.
However, more expressive automata models may be required
to represent platform components. Consider a navigation
stack that depends on the states of several low-level com-
ponents, e.g., collision avoidance and localization. Each of
these components will be modeled separately, but we might
also want to formulate constraints on composite states cov-
ering multiple components. Hierarchical state machines as
described in Girault, Lee, and Lee (1999) may be suitable to
formulate such component-level abstractions. Timed transi-
tions, such as the transition Calibrating → Ready may be
modeled with timed automata (Alur and Dill 1994). While
we will not change the foundation of our high-level rea-
soning, i.e., a situation calculus-based framework, we might
consider a Petri-Net-based model such as the one described
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by Ziparo et al. (2011) for the component description as
well.

Constraints

Platform constraints define properties that must always hold
during the execution of the action plan. Based on Figure 1
and using Allen’s interval relations (Allen 1983), we can de-
fine multiple constraints that must hold for the arm:
1. To calibrate the arm, the robot must be at a free location
(i.e., a location without close objects).

free(at(x)) during state(arm) = Calibrating

2. When starting to pick up an object, the arm must be ready
or parked.

state(arm) = Ready meets pickup(x)∨
state(arm) = Parked meets pickup(x)

3. Whenever the robot is moving, the arm must be parked.

state(arm) = Parked during

state(navigation) = Moving

Quantitative Temporal Constraints The examples above
are qualitative temporal constraints. However, some com-
ponents also require quantitative temporal constraints. Con-
sider an RGBD camera that is used for perception. We can
formulate the following constraints about the camera:
1. The camera needs some time to initialize, and therefore

needs to be started one second before it can be used:

state(camera) = Running before≥1s detect(x )

2. On the other hand, image processing is expensive, and
thus should only be turned on if it is actually used within
the next two seconds:

state(camera) �= Running unless≤2s detect(x )

The constraints above will be formulated in a temporal ex-
tension of the Situation Calculus and may refer to states
of system components, fluents, and actions. While previous
work only allowed qualititative temporal constraints (Schif-
fer, Wortmann, and Lakemeyer 2010), we want to allow for
quantitative temporal constraints. In order to do so, we will
extend the Situation Calculus based on Reiter (1996) and
Gabaldon (2003) with qualitative and quantitative tempo-
ral aspects and embed the Metric Interval Temporal Logic
(MITL) (Alur, Feder, and Henzinger 1996) into the Situa-
tion Calculus.

Events, Temporal Constraints, and Concurrency

The model of the Katana arm shown in Figure 1 has three
kinds of edges: 1. Action edges that are directly triggered
by the agent and are therefore under agent control, 2. Events
that are triggered by the component itself, e.g. to end a du-
rative action, 3. Exogenous events that are triggered by an
external participant not under the agent’s direct control, e.g.,
a human. Previously, both kinds of events were modeled as
explicit exogenous actions with respective waiting actions.

In our approach, we want to make use of concurrency in
Golog with the waitFor construct (Grosskreutz and Lake-
meyer 2003).

If we want to use the model of a system component to
plan for a certain system configuration, e.g., a calibrated
arm, we need to know about expected events. As an exam-
ple, if the agent decides to start the calibration, it expects
the calibration to finish successfully. If this was not the case,
the agent could not cause state changes of system compo-
nents in a meaningful way, as the outcome of any event tran-
sitions would be unknown. In addition to the information
which transition is to be expected, we also annotate system
events with expected time bounds. This allows the agent not
only to reason about which event will occur, but also when
it will occur. In the Katana example, we annotate the edge
Calibrating → Ready with the expected time bounds [4, 5],
i.e., we expect the calibration to take at least four and at most
five seconds. This way, the agent knows that it needs to start
the calibration at least five seconds before it can use the arm.

Action Plan Transformation & Constraint
Satisfaction

Given a platform-specific constraint model, an abstract ac-
tion plan can be transformed into a platform-specific ac-
tion plan that satisfies all constraints. To create such a
plan, first the Golog interpreter determines an abstract ac-
tion plan as usual. Next, the constraints are transformed
into constraint networks (Dechter, Meiri, and Pearl 1991;
Meiri 1996). In contrast to Finzi and Pirri (2005), we will not
make use of timelines, but instead restrict our approach to in-
terleaved and possibly true concurrency in order to allow a
simpler formalization. Additionally, our approach will sup-
port quantitative constraints. The resulting constraint net-
work will be evaluated with existing constraint solvers. A
solution of the constraint network will determine the or-
der of events with their interval limits. Platform constraints,
e.g., state(arm) = Ready , must be transformed into ac-
tions by determining a suitable action sequence based on the
platform model. The method of determining this action se-
quence depends on the underlying state machine model. For
a simple state machine as shown in Figure 1, the actions can
be determined by searching for a sequence of transitions that
result in the desired state. For other, more expressive mod-
els, more complex methods may be necessary.

In some cases, such as the calibration of the Katana arm,
inserting a single action may suffice. In other cases, the orig-
inal action plan must be modified, e.g. to actively seek out
localization features before some delicate manipulation task
can be performed. Thus, a clear separation of the abstract
agent and the plan transformation is not always possible and
significant modifications of the original plan may be neces-
sary. For this reason, the transformation of the abstract ac-
tion plan into an executable plan will be part of the high-
level agent and implemented within the Golog interpreter.

Conclusion

We presented a concept for an agent system with an explicit
model of the robotic platform and its constraints. The robotic
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platform is modeled with state automata based on timed au-
tomata and hierarchical state machines and allows multiple
transition types for agent actions, system events, and exoge-
nous events. Based on these models, the user can formu-
late constraints in an extension of the Situation Calculus,
which allows to define platform-specific, quantitative tem-
poral constraints. During execution, the abstract action plan
is modified to satisfy all constraints of the underlying plat-
form. The proposed agent system allows the user to separate
behavior control and platformmanagement while taking into
account that the constraints may require significant changes
to the abstract action plan, which are handled by the agent
system during execution.
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