
Initial Results on Generating Macro Actions from a Plan Database
for Planning on Autonomous Mobile Robots

Till Hofmann, Tim Niemueller, Gerhard Lakemeyer
Knowledge-Based Systems Group

RWTH Aachen University

At A Glance

Task Planning for Autonomous Robots
� Robotic systems plan and re-plan frequently
→ Planning needs to be especially fast
� In typical scenarios, robots perform similar or repeating tasks
→ Exploit repetitiveness by re-using previous planning solutions

Database-Driven Macro Planning for STRIPS (DBMP/S)
� Improve planner performance with additional macro actions
� A macro is an action consisting of several STRIPS actions
� Macros are generated from frequent action sequences

DBMP/S Features

� DBMP/S collects plans to speed up subsequent planning tasks
� Previous results are used to identify frequent action sequences
� Frequent action sequences are merged into macro actions
� Macro actions are represented as normal PDDL actions
⇒ No adaption of the underlying planner necessary
� Common parameters are coalesced
⇒ Reduce the total number of parameters in resulting macros
� Macros are generated off-line
⇒ Shorter on-line planning time

Plan Database

� Store domains, problems, plans, and macros in document-
oriented database MongoDB

� Store data in a structured way in order to allow analysis
� MongoDB allows horizontal scaling and MapReduce natively

{

"_id" : ObjectId("582 c9443babe8d00010f4209"),

"actions" : [

{ "operator" : "unstack",

"parameters" : ["b16", "b17"]

},

{ "operator" : "put -down",

"parameters" : ["b16"]

}, ...],

"domain" : "blocksworld",

"problem" : "BW -rand -20 -75",

"raw" : "(UNSTACK B16 B17)\n(PUT -DOWN B16) ,...",

"resources" : [0.0145]

}

Identification

Identify frequent action sequences with MapReduce

Map: Emit all action sub-sequences in all plans including all pos-
sible parameter assignments

Reduce: Count occurring action sequences
Result: A set of ungrounded frequent action sequences

Generation

Generate precondition and effects from an action sequence

Given an action sequence 〈a1, . . . , an〉 with preconditions
π1, . . . , πn and effects e1, . . . , en:
1. Compute the macro precondition by regressing each precondi-

tion πi over the effects ei−1 . . . , e1
2. Compute the macro effect by chaining the effects e1, . . . , en

Regressing a precondition π over effect e

1. If π is a conjunction π =
∧
j πj, we regress all sub-formulae πj

to π′j and obtain π′ =
∧
j π
′
j, analogously for disjunctions

2. If π = P (~s) and e = P (~t) for some predicate P , then we regress
π to π′ = (~s = ~t ∨ P (~s))

3. Similarly, if π = ¬P (~s) and e = P (~t) for some predicate P , we
regress π to π′ = (~s 6= ~t ∧ ¬P (~s))

4. If π = (¬)P (~s) and e = Q(~t) for some distinct predicates P and
Q, the effect is unrelated to π and we get π′ = π. For a negated
effect e = ¬P (~t), we proceed analogously

5. Finally, if e is a conjunction e =
∧
j ej, we regress π on each ej

successively

Macro effect generation

� Merge all effects σ = 〈e1, . . . , en〉
� Start with e = en, i.e., the last action’s effect
� Add each effect ei−1 consecutively with effect chaining
� After chaining en, . . . , e1, we obtain the macro effect e

Effect Chaining of two effects e and f

1. If e is a conjunction e =
∧
i ei, we chain each ei with f to e′i and

obtain e′ =
∧
i e
′
i

2. If e = f , we remove e
3. If e = ¬f , we remove e
4. If f is a conjunction f =

∧
i fi, we chain e with each fi consec-

utively to e′i and obtain e′ =
∧
i e
′
i

5. If e = P (~s) and f = Q(~t) for some distinct predicates P and Q,
we keep e, i.e., e′ = e

Architecture Overview

Plan DB (1)Planner

Domain

Problems

Seed
Plans

Macro Identifier (2)
Frequent Action

Sequences

Macro Generator (3)

Augmented Domain (4)

Macro Candidates
(Action Sequences)

Macro Actions
(PDDL Operators)(5)

DBMP/S

1. Collect planning results in a plan database
2. Identify frequent action sequences
3. Generate macros for those action sequences
4. Add macros to the domain to get an augmented domain
5. Use augmented domain for new planning problems

Example: Blocksworld Macros

Actions

(:action unstack

:parameters (?x - block ?y - block)

:precondition (and (on ?x ?y) (clear ?x) (handempty))

:effect (and (holding ?x) (clear ?y) (not (clear ?x))

(not (handempty)) (not (on ?x ?y))))

(:action put-down

:parameters (?b - block)

:precondition (holding ?b)

:effect (and (not (holding ?b)) (clear ?b)

(handempty) (ontable ?b)))

Identification

[{ "problem": "p1", "actions" : [

{ "operator" : "unstack",

"parameters" : ["b19", "b1"] },

{ "operator" : "put -down",

"parameters" : ["b19"]

}

]},

{ "problem": "p2", "actions" : [

{ "operator" : "unstack",

"parameters" : ["b12", "b3"] },

{ "operator" : "put -down",

"parameters" : ["b12"] }

]}

]

� Action sequence: <unstack,put-down>
� Assignment for unstack: ?x→ ?p1, ?y→ ?p2

� Assignment for put-down: ?b→ ?p1

⇒ Parameters ?x and ?b are coalesced to reduce final parameters

Generated Macro

; MACRO unstack-put-down

; ACTIONS [unstack ,put-down] PARAMETERS [[1 ,2] ,[1]]

(:action unstack-put-down

:parameters (?p1 ?p2 - block)

:precondition (and (on ?p1 ?p2) (clear ?p1)

(handempty))

:effect (and (not (holding ?p1)) (clear ?p1)

(handempty) (ontable ?p1)

(clear ?p2) (not (on ?p1 ?p2))))

� Precondition of put-down is regressed on unstack

→ (holding ?p1) can be simplified to (true)

� Effect of unstack is chained with effect of put-down
→ effect (not (handempty)) is removed from macro effect
� The macro’s actions and parameter assignment are stored as a

comment to translate the macro to the original actions

Benchmark Results

FF MACROFF Marvin
DBMP/S

(FF)
DBMP/S
(Marvin)

Blocksworld (100 problems)
solved 76 100 93 85 93
mean (s) 25.2 0.72 41.1 11.5 33.0

Q1 (s) 0.006 0.16 0.12 0.006 0.15
Q2 (s) 0.12 0.23 0.23 0.017 0.25
Q3 (s) 124 0.40 0.64 1.57 0.94

Hiking (20 problems)
solved 12 15 15 19 15
mean (s) 260 349 264 196 284

Q1 (s) 91.0 86.6 10.9 5.67 11.8
Q2 (s) 280 339 182 25.6 273
Q3 (s) × 1751 1447 268 1653

Barman (20 problems)
solved 0 0 6 19 20
mean (s) × × 125 4.60 147

Q1 (s) × × 256 2.10 6.76
Q2 (s) × × × 2.96 17.3
Q3 (s) × × × 5.77 35.4

Logistics Robots (81 problems)
solved 4 † 3 4 3
mean (s) 0.156 × 0.74 0.094 0.40

Blocksworld

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1 10 100 1000

C
o
m

p
le

ti
o
n
 Q

u
o
ti

e
n
t

Planning Time (s)

FF
Marvin

MacroFF
DBMP (FF)

Hiking

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100 1000

C
o
m

p
le

ti
o
n
 Q

u
o
ti

e
n
t

Planning Time (s)

FF
Marvin

MacroFF
DBMP (FF)

Barman

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100 1000

C
o
m

p
le

ti
o
n
 Q

u
o
ti

e
n
t

Planning Time (s)

FF
Marvin

MacroFF
DBMP (FF)

ICAPS 2017 - Pittsburgh, PA, USA

Acknowledgments

� DFG Research Unit FOR 1513 on Hybrid Reasoning for Intelligent Systems
� DFG Grant GL-747/23-1
� Festo Didactic SE (travel funding)

