Initial Results on Generating Macro Actions from a Plan Database
for Planning on Autonomous Mobile Robots

Till Hofmann, Tim Niemueller, Gerhard Lakemeyer

Knowledge-Based Systems Group
RWTH Aachen University

At A Glance Architecture Overview
Task Planning for Autonomous Robots
= Robotic systems plan and re-plan frequently [Macro Identifier (2)] DBEMP/S
— Planning needs to be especially fast . Frequent Action Macro Candidates 1. Collect planning results in a plan database
= In typi.cal sce.r?arios, robots perform sirpilar or repeating tgsks Domain Sequences (Action Sequences) 2. Identify frequent action sequences
— Exploit repetitiveness by re-using previous planning solutions \ o . - [Macro Generator (3) 3. Generate macros for those action sequences
Database-Driven Macro Planning for STRIPS (DBMP/S) Planner |, | Plans > Plan DB (1) T 4. Add macros to the domain to get an augmented domain
= Improve planner performance with additional macro actions / e \(§) (PDDL Operators) 5. Use augmented domain for new planning problems
= A macro is an action consisting of several STRIPS actions [Problems h Augmented Domain (4)]
= Macros are generated from frequent action sequences ‘
Plan Database DBMP/S Features Benchmark Results
= Store domains, problems, plans, and macros in document- = DBMP/S collects plans to speed up subsequent planning tasks
oriented da.tabase MongoDB | | = Previous results are used to identify frequent action sequences FE | MAGROEE | Marvin DI%,';/IFP)/S I?I\%\/rl\%?
= Store data in a structured way in order to allow analysis = Frequent action sequences are merged into macro actions Blocksworld (100 problems)
= MongoDB allows horizontal scaling and MapReduce natively = Macro actions are represented as normal PDDL actions # solved 76 100 93 85 93
{ = No adaption of the underlying planner necessary mean (s) =~ 25.2 0.72 41.1 11.5 33.0
"_id" : ObjectId("582c9443babe8d00010£f4209"), = Common parameters ar | g Q1 (s) 0.006 0.16 0.12 0.006 0.15
"actions" : I Ommon parameters are coaiesce Q2(s) 0.12 0.23| 0.23 0.017 0.25
{ "operator" : "unstack", = Reduce the total number of parameters in resulting macros Q3 (s) 124 0.40 0.64 1.57 0.94
"parameters" : ["bl6é", "bl7"] : oy =
3 = Macros are generated off-line Hiking (20 problems)
{ "operator" : "put-down", = Shorter on-line planning time # solved 12 15 15 19 15
"parameters" : ["bl6"] mean (S) 260 349 264 196 284
d}’ SN o Q1 (s) 91.0 86.6 10.9 5.67 11.8
"domain" : " ocksworld",
'problem" : "BN-rand-20-75", Example: Blocksworld Macros Q2 (s) 280 339 182 29.6 2173
"raw" : "(UNSTACK B16 B17)\n(PUT-DOWN B16),...", e ——————— QS (S) X 1751 1447 2638 1653
"resources" : [0.0145] Actions Barman (20 problems)
¥ # solved 0 0 6 19 20
(:action unstack mean (S) X X 125 4.60 147
:parameters (?x - block 7y - block) Q1 (s) % >< 256 210 6.76
:precondition (and (on 7x ?7y) (clear 7x) (handempty)) Q2 (s) % < % 2 96 17.3
Identification ceffect (and (holding ?x) (clear ?7y) (not (clear 7x)) Q3 5.77 35-4
T — (not (handempty)) (not (on 7x 7y)))) (S) X — X X - i
Identify frequent action sequences with MapReduce (:action put-down Logistics Robots (81 problems)
_ , _ _ _ :parameters (?b - block)
Map: Emit all action syb—sequences in all plans including all pos- .precondition (holding 7b) rﬁeS:;V(esC; 0 152‘ i 0 72 0 092 0 48
sible parameter assignments ceffect (and (not (holding 7?b)) (clear 7?b) : : - '
Reduce: Count occurring action sequences (handempty) (ontable 7b)))
Result: A set of ungrounded frequent action sequences Blocksworld
Identification varvin DBMP (FF)
—Ge eratio { "operator" : "unstack", g I aie
Generate precondition and effects from an action sequence ‘parameters” : L 'b19%, "bit]), E ~
_ N { "operator" : "put-down", c :
Given an action sequence (ay,...,an) With preconditions "parameters" : ["b19"] = r
T, ...,7n and effects e, ..., en: } E
n . . . : 1}, S
1. Qomputet e macro precondition by regressing each precondi- { "problem": "p2", "actions" : [
tion ™; over the effects €;—1---,€1 { "operator" : "unstack", 0.55 e i L
2. Compute the macro effect by chaining the effects ey, ..., ey, "parameters" : ["bl2", "b3"] }, 1 10 100 1000
{ "operator" : "put-down", Planning Time (s)
Regressing a precondition = over effect ¢ - "parameters" : ["bl2"] }
1. If 7 Is a conjunction © = /\j 7j, we regress all sub-formulae 7;] Hiking
to w} and obtain 7’ = A, 7r§, analogously for disjunctions 3 VScroFF
2.1f = P(5) and e = P(t) for some predicate P, then we regress = Action sequence: <unstack, put-down> S -
rton = (5= £V P(5)) = Assignment for unstack: ?x — ?pl, 7y — 7p2 | r
3. Similarly, if 7 = ﬂi(sﬁ)ﬁand ¢ = P(t) for some predicate P, we = Assignment for put-down: ?b — 7p1 é o |— _|
regress mto ™ = (5 # L A ~P(5)) — Parameters 7x and 7b are coalesced to reduce final parameters 3 e o it
4.1f T = (-)P(5) and e = Q(¢) for some distinct predicates P and 5 T = o
@, the effect is unrelated to = and we get =’ = 7. For a negated Generated Macro L] '_| mr R
effect e = = P(t), we proceed analogously 5 NI
5. Finally, if e is a conjunction e = A ; e;, we regress m on each ¢; . MACRO unstack-put-down |
successively ; ACTIONS [unstack,put-down] PARAMETERS [[1,2],[1]] . e
: 100 1000
(:raction unstack-put-down o
Macro effect generation :parameters (?pl 7?p2 - block) Planning Time (s)
:precondition (and (on 7pl 7p2) (clear 7pl)
= Merge all effects o = (e1,...,epn) (handempty)) Barman
= Start with e = ¢, i.e., the last action’s effect ceffect (and (not (holding ?pl)) (clear ?pl)
= Add each effect e;,_; consecutively with effect chaining (handempty) (ontable 7p1) i DBMP (P
. . (clear ?7p2) (not (on ?pl ?p2)))) -
= After chaining ey, ..., e1, we obtain the macro efiecte | [—
Effect Chaining of two effects ¢ and f = Precondition of put-down is regressed on unstack £
, - : e 4§
1.1f e is a conjunction e = A, ¢;, we chain each ¢; with f to ¢/ and — (holding ?7pl) can be simplified to (true) 2 o6l S
obtain ¢ = A\, €, = Effect of unstack is chained with effect of put-down S
2.1fe= f, we remove e — effect (not (handempty)) is removed from macro effect %Ei
3.1f e =—f, we remove e = The macro’s actions and parameter assignment are stored as a S
4.1f f is a conjunction f = A, f;, we chain e with each f; consec- comment to translate the macro to the original actions
utively to e, and obtain ¢/ = A ¢’
5.1f e = P(5) and f = Q(¢) for some distinct predicates P and Q, Planning Time (s)
we keep e, i.e., e =e¢

Acknowledgments
Knowledge- Rm S
Based = DFG Research Unit FOR 1513 on Hybrid Reasoning for Intelligent Systems

Systems = DFG Grant GL-747/23-1
Group = Festo Didactic SE (travel funding)

ICAPS 2017 - Pittsburgh, PA, USA

