
Initial Results on Generating Macro Actions from a
Plan Database for Planning on Autonomous Mobile Robots

Till Hofmann, Tim Niemueller, Gerhard Lakemeyer
Knowledge-Based Systems Group

RWTH Aachen University, Germany
{hofmann, niemueller, lakemeyer}@kbsg.rwth-aachen.de

Abstract

Planning in an on-line robotics context has the specific re-
quirement of a short planning duration. A property of typ-
ical contemporary scenarios is that (mobile) robots perform
similar or even repeating tasks during operation. With these
robot domains in mind, we propose database-driven macro
planning for STRIPS (DBMP/S) that learns macros – ac-
tion sequences that frequently appear in plans – from expe-
rience for PDDL-based planners. Planning duration is im-
proved over time by off-line processing of seed plans using
a scalable database. The approach is indifferent about the
specific planner by representing the resulting macros again
as actions with preconditions and effects determined based
on the actions contained in the macro. For some domains
we have used separate planners for learning and execution
exploiting their respective strengths. Initial results based on
some IPC domains and a logistic robot scenario show signifi-
cantly improved (over non-macro planners) or slightly better
and comparable (to existing macro planners) performance.

1 Introduction

Task planning is not as widespread in robotics as could be
assumed by the expected benefits of declarative specifica-
tions, automated action sequencing, and extensibility. Long
planning times (at run-time) are a major issue for many
real-time and on-line scenarios. Especially continual plan-
ning (Brenner and Nebel 2009; Hofmann et al. 2016), where
re-planning occurs frequently when new observations be-
come available or sub-plans are expanded, can be sensi-
tive to this issue – but it provides important features such
as robustness and overall efficiency by dividing the overall
planning problems in smaller chunks. A key observation
in many robotic domains is that robots repeatedly execute
similar plans. In this paper, we propose an approach and
present initial results to mitigate the issue of long planning
times by exploiting the repeating structure in robotic plan-
ning – that is, in the frequent execution of similar plans
for different goals – through recording plans in a database
and later extracting macros. The idea of task planning with
macros, where typical action sequences are grouped into a
macro action, has been used before in various ways to im-
prove successor state generation by skipping intermediate

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

states. Our approach combines several advantages, i.e., it
determines macros a-priori off-line based on previous plans,
it can employ and feed into several existing unmodified
PDDL-based planners, and it creates domain-specific but
problem-independent macros. Effectively, we trade off-line
computation time for improved run-time planning perfor-
mance. In robotics scenarios, this can be done either during
robot idle times, or concurrently to execution. The over-
all performance can then be improved gradually in the long
term.

Our approach operates on a plan database created a-priori
by running planners on example problems. Distributing this
computation with a cloud infrastructure allows for rapidly
processing many instances. We carry out this first step off-
line in order to accept longer planning times. If feasible, this
could also be done concurrently to execution on-line. We
then use MapReduce processing methods on a document-
oriented and distributed plan database to identify macros of
varying length with their frequency. For each macro, we
generate a PDDL operator that can then again be used in a
macro-augmented domain. For this macro operator, we de-
termine the necessary preconditions based on the contained
actions using regression and simplification, determine its ef-
fects through effect chaining, and coalesce parameters ex-
ploiting type information. Further domain executions will
then allow estimating a macro’s impact. The procedure can
handle macros of arbitrary size (by incrementing the desired
sequence length during identification) or may be be applied
repeatedly to create hierarchical macros. If evaluation deter-
mines no positive or even a detrimental effect, macros may
be pruned and excluded from further identification. By this,
the speedup in planning improves over time until a sufficient
domain-dependent number of plans have been analyzed.

We have evaluated the approach based on two classes of
scenarios. We primarily focus on domains from the Inter-
national Planning Competition (IPC). They provide a good
basis for the general and extensive evaluation of macro gen-
eration. As a proof-of-concept robotics application domain,
we use the logistics robot scenario of the upcoming robotics
planning competition (Niemueller et al. 2016) that requires
robots to transport workpieces among production machines.
While the specific sequences are randomized and the costs
vary, there are basic recurring sequences such as picking up
a workpiece at one machine and delivering it to another.

Proceedings of the Twenty-Seventh International Conference on Automated Planning and Scheduling (ICAPS 2017)

498

Our contribution is the proposal of a novel method for
database-driven macro planning for STRIPS (DBMP/S),
that identifies macros from a database of recorded plans, and
generates macros as PDDL operators with proper precondi-
tion and effects. We provide results on some IPC domains
and a relevant robotics scenario, and a comparison to exist-
ing macro planning approaches. This paper is limited to the
typed STRIPS fragment of PDDL. Ongoing work extends
the approach to the ADL fragment.

In this paper, we provide some related work (Section 2)
and then sketch our approach of data-driven macro planning
in Section 3. The initial results we provide in Section 4 show
that our approach outperforms planning without macros by
at least an order of magnitude (given a suitable number of
training samples, i.e., existing successful plans) and com-
parable or better performance than existing macro planning
approaches, with a richer set of domain features and suitable
planners. We conclude in Section 5.

2 Related Work

Planning deals with finding a sequence of actions to reach a
given world state, called the goal state, from an initial state
(Ghallab, Nau, and Traverso 2004). A world state is repre-
sented by a set of predicates. Planning operators are gen-
eralized actions which are described by their preconditions
and effects. An action is a grounded planning operator. De-
pending on the formalism, certain restrictions apply to the
representation of world states, preconditions, and effects.
PDDL Dialects. PDDL (McDermott et al. 1998) is the
de-facto standard for defining planning problems and allows
different formalisms depending on the given requirements.
It supports STRIPS-like domains (Nilsson and Fikes 1972),
but also more complex formalisms such as ADL (Pednault
1989) with types, disjunctive and quantified preconditions,
and conditional effects.
Planners. Heuristic planners like FF (Hoffmann and Nebel
2001) and FASTDOWNWARD (Helmert 2006) use forward
state space search with heuristics, e.g., FF relaxes the prob-
lem by ignoring delete effects. FASTDOWNWARD has a
portfolio of heuristics. Both support ADL.
Macro Planning. In macro planning, a macro action is
generated from a frequent or otherwise helpful action se-
quence. During search, the macro action and thus the action
sequence is applied at once. Therefore, macro planning im-
proves state space search by generating additional successor
states which allows to skip intermediate states.

The planner STRIPS has been extended with macros in
the form of generalized plans (Fikes, Hart, and Nilsson
1972), (partial) solutions to previous problems which are
generalized by substituting constants with parameters. Gen-
eralized plans are domain-specific but problem-independent.
The planner REFLECT (Dawson and Siklóssy 1977) is
a STRIPS-based planner that generates problem-specific
macro actions by analyzing the domain and the problem dur-
ing the pre-processing phase. The Duet Planner (Gerevini et
al. 2008) integrates domain-independent heuristic planning
with domain-specific knowledge by combining the PDDL
planner LPG (Gerevini, Saetti, and Serina 2003) with the

HTN planner SHOP2 (Nau et al. 2003). In contrast to macro
actions in other approaches, HTNs to be used by the Duet
Planner must be specified manually by the domain designer.

Marvin (Coles and Smith 2007) is a FF-based macro plan-
ner that uses macros to escape plateaus during search. A
plateau occurs if the heuristic value of all successor states is
the same as or worse than the heuristic value of the current
state. If Marvin encounters a plateau and escapes it, it re-
members the escaping action sequence as macro. When the
next plateau is encountered, macros from previous plateaus
are considered as additional actions. Macros are only ap-
plied if there is a plateau. Marvin has been extended to
store macro actions in a library so they can be re-used for
solving subsequent problems (Coles, Fox, and Smith 2007).
In order to keep the size of the library reasonable, macros
are filtered based on usage count, number of problems since
last use, instantiation count, and length of the macro action.
Marvin’s macro actions are planner-specific and cannot be
re-used with other planners.

Wizard (Newton et al. 2008) learns STRIPS-based
macros using a genetic algorithm. It generates initial macros
from solutions of less complex seeding problems. It then ap-
plies a genetic algorithm to improve macros by prepending
and appending actions, removing actions from the beginning
and end, and splitting the macro into two. Wizard evalu-
ates macros based on the percentage of problems solved, the
mean time gain/loss, and the percentage of problems that
were solved faster (Newton et al. 2007).

The planner MACROFF (Botea et al. 2005) uses two
different approaches to macro planning: Component
Abstraction-Enhanced Domains (CA-ED) and a Solution-
Enhanced Planner (SOL-EP). With CA-ED the original do-
main is augmented with macro actions represented as nor-
mal PDDL actions. Thus, the planner can use macro actions
as regular actions during search, the planner does not need
to be adapted to use macros. CA-ED uses component ab-
straction, which combines low-level features linked by static
facts into abstract components, which are then used to build
macros. Macro actions are added to the original domain, no
planner modification is necessary. CA-ED supports STRIPS
domains. In contrast, SOL-EP does not represent macros as
normal actions, but instead represents a macro as a partially
ordered sequence of operators (Botea, Müller, and Schaef-
fer 2005), which can be applied in one step during search.
Thus, the underlying planner needs to be modified. In SOL-
EP, macros are generated from training problems and then
statically filtered such that only the most promising macros
are kept. SOL-EP supports ADL domains.

MUM (Chrpa, Vallati, and McCluskey 2014) is a
STRIPS-based macro planner that learns macros from the
solutions of less complex training problems and ranks and
prunes macros based on the concept of outer entanglements
(Chrpa and McCluskey 2012). Additionally, MUM uses in-
dependent actions (Chrpa 2010), i.e., actions that can be
swapped without making the plan invalid, to generate macro
actions from action sequences that are not consecutive in the
original plans. In MUM, the planner is modified to consider
outer entanglements of macros during search; thus, swap-
ping the planner is not possible.

499

DBMP/S

Plan DBPlanner

Domain

Problems

Seed
Plans

Macro Identifier
Frequent Action

Sequences

Macro Generator

Augmented Domain

Macro Candidates
(Action Sequences)

Macro Actions
(PDDL Operators)

Figure 1: DBMP/S Architecture Overview

3 Database-Driven Macro Generation

The architecture of the proposed approach is shown in Fig-
ure 1. On the left, a classic PDDL setup consisting of do-
main definition, a number of problem instances, and a suit-
able planner is used to generate seed plans. These are stored
in a plan database. This may be done on- or off-line, de-
pending on the feasibility in the specific scenario. At suit-
able times, the macro identifier extracts frequent action se-
quences (other identification criteria may be used). The
generator computes a PDDL operator with proper precon-
ditions and effects. This operator is then integrated into
an augmented domain which is used in subsequent plan-
ning. The augmented domain may be used for further (hi-
erarchical) macro generation. Run-time problems are also
stored in the database and may be used off-line later for non-
hierarchical macro generation and evaluation.

Plan Database. Plans are stored in the document-oriented
database MongoDB. It stores (nested) groups of key-value
pairs called documents. Based on its use as a generic robot
database (Niemueller, Lakemeyer, and Srinivasa 2012) this
structure is useful as a unified storage for planning domains,
problems, plans, and additional run-time information. Since
the database is denormalized, that is, related data is embed-
ded into a single document, queries processing can be scaled
horizontally among many hosts easily.

Macro Identification. Potential macros are identified us-
ing the MapReduce (Dean and Ghemawat 2008) database
query paradigm supported by MongoDB. An identification
query then consists of two steps. First, a map function is
applied to all plan documents of a specific domain. It emits
one document consisting of an operator list and a parame-
ter assignment for each sub-sequence of actions of a plan
within specified length bounds, e.g., emit all sequences of
length three to eight. For the parameter assignment, the map
function always computes an assignment such that the to-
tal number of parameters is minimal, i.e., if the grounding
of two operators in the sub-sequence have common values,
then these parameters are represented as one parameter in
the resulting macro candidate. Second, a reduce step then
counts the occurrence of each sequence and parameter as-
signment. Action sequences are then selected for macro gen-
eration based on the sequence’s frequency and its parameter
reduction (other selection criteria are also possible).

Consider a plan database with the following plans (gener-
ated based on the actions shown in Listings 1 and 2):

Plan 1 1. move-to-get(r1, C-RS, O, C-BS, O)

2. wp-get(r1, wp1, C-BS, O)

Plan 2 1. move-to-get(r2, C-BS, O, C-CS1, O)

2. get(r2, wp2, C-CS1, O)

This yields the sequence <move-to-get,get>. Both plans
assign the same values to some parameters of both actions.
These parameters can be coalesced by merging the param-
eters ?to and ?mps to ?p4, and ?from-side, ?to-side,
and ?side to ?p3 (cf. Listing 5).

Note that macro identification is decoupled from plan-
ning. Thus, we can scale the computation of seed plans in a
cluster horizontally to parallelize.
Macro Generation. The goal of macro generation is to
compute a PDDL action representation for an action se-
quence including a parameter assignment from the identi-
fication step. We restrict this work to STRIPS actions. To
compute a STRIPS representation of an action sequence, the
action’s precondition and effects have to be identified.

For the precondition, we use a form of regression sim-
ilar to (Newton et al. 2007). For a given action sequence
〈a1, a2, . . . , an〉, we regress each precondition πi of each
action ai over all effects ei−1, ei−2, . . . , e1 of the previous
actions. To regress a precondition π on a single effect e, we
proceed as follows1: (1) If π is a conjunction π =

∧
j πj ,

we regress all sub-formulae πj to π′j and obtain π′ =
∧

j π
′
j ,

analogously for disjunctions. (2) If π = P (�s) and e = P (�t)
for some predicate P , then we regress π to π′ = (�s =
�t ∨ P (�s)). (3) Similarly, if π = ¬P (�s) and e = P (�t) for
some predicate P , we regress π to π′ = (�s �= �t ∧ ¬P (�s)).
(4) If π = (¬)P (�s) and e = Q(�t) for some distinct predi-
cates P and Q, the effect is unrelated to π and we get π′ = π.
For a negated effect e = ¬P (�t), we proceed analogously.

1�t denotes a sequence of parameters t1, t2, . . . , tk

(:action move-to-get

:parameters (?r - robot ?from - location

?from-side - mps-side ?to - mps ?to-side - mps-side)

:precondition (and
(entered-field ?r) (at ?r ?from ?from-side)

(location-free ?to ?to-side) (can-hold ?r)

(mps-state ?to READY-OUTPUT))

:effect (and (not (at ?r ?from ?from-side))

(at ?r ?to ?to-side) (location-free ?from ?from-side)

(not (location-free ?to ?to-side))))

Listing 1: The action move-to-get

(:action wp-get

:parameters (?r - robot ?wp - workpiece

?m - mps ?side - mps-side)

:precondition (and (at ?r ?m ?side) (can-hold ?r)

(wp-at ?wp ?m ?side) (wp-usable ?wp)

(mps-state ?m READY-OUTPUT))

:effect (and (not (wp-at ?wp ?m ?side))

(holding ?r ?wp) (not (can-hold ?r))

(not (mps-state ?m READY-OUTPUT))

(mps-state ?m IDLE)))

Listing 2: The action wp-get

500

:effect (and
(not (at ?p1 ?p2 ?p3)) (location-free ?p2 ?p3)

(not (location-free ?p4 ?p3)) (at ?p1 ?p4 ?p3)))

Listing 3: The effect of move-to-get after reassignment.

:precondition (and (at ?p1 ?p4 ?p3) (can-hold ?p1)

(wp-at ?p5 ?p4 ?p3) (wp-usable ?p5)

(mps-state ?p4 READY-AT-OUTPUT))

Listing 4: The precondition of wp-get after reassignment.

(5) Finally, if e is a conjunction e =
∧

j ej , we regress π on
each ej successively. After regressing all preconditions πi

in this manner, we obtain a precondition π′ as precondition
of the macro. If π′ holds, then all actions of the sequence
can be executed consecutively.
Going back to the previous example, we need to regress the
precondition π of the action wp-get on the effects e of
move-to-get, i.e., following rule 1 and 5, we need to
regress each conjunct of the precondition π shown in List-
ing 4 successively on all conjuncts of the effect e shown in
Listing 3. Consider the conjunct (at ?p1 ?p4 ?p3) of π.
First, regressing π on the sub-effect (not (at ?p1 ?p2
?p3)) of e yields (and (not (= ?p2 ?4))(at ?p1

?p4 ?p3)) by rule 3. The resulting conjunct (at ?p1
?p4 ?p3) is further regressed to true because of the sub-
effect (at ?p1 ?p4 ?p3) of e.

For the effect, we need to concatenate all effects
while removing each effect conflict. For an action se-
quence 〈a1, a2, . . . , an〉 and corresponding effects σ =
〈e1, e2, . . . , en〉, we start with en and add each previous ef-
fect consecutively with effect chaining. To chain two effects
e, f , where e occurs in σ before f , we proceed as follows:
1. If e is a conjunction e =

∧
i ei, we chain each ei with

f to e′i and obtain e′ =
∧

i e
′
i. 2. If e = f , we remove

e. 3. If e = ¬f , we remove e. 4. If f is a conjunction
f =

∧
i fi, we chain e with each fi consecutively to e′i and

obtain e′ =
∧

i e
′
i. 5. If e = P (�s) and f = Q(�t) for some

distinct predicates P and Q, we keep e, i.e., e′ = e. We do
not allow the case e = P (�s), f = ¬P (�t) and the analogous
case e = ¬P (�s), f = P (�t) because this would require a
conditional effect to distinguish the cases �s �= �t and �s = �t.

(:action move-to-get_wp-get

:parameters (?p1 - robot ?p2 - location

?p3 - mps-side ?p4 - mps ?p5 - workpiece)

:precondition (and
(entered-field ?p1) (at ?p1 ?p2 ?p3) (wp-usable ?p5)

(location-free ?p4 ?p3) (mps-state ?p4 READY-OUTPUT)

(can-hold ?p1) (not (= ?p2 ?p4)) (wp-at ?p5 ?p4 ?p3))

:effect (and
(not (wp-at ?p5 ?p4 ?p3)) (mps-state ?p4 IDLE)

(not (mps-state ?p4 READY-OUTPUT))

(at ?p1 ?p4 ?p3) (not (at ?p1 ?p2 ?p3))

(holding ?p1 ?p5) (location-free ?p2 ?p3)

(not (can-hold ?p1)) (not (location-free ?p4 ?p3))))

Listing 5: The macro move-to-get,wp-get

:effect (and (not (wp-at ?p5 ?p4 ?p3))

(holding ?p1 ?p5) (not (can-hold ?p1))

(not (mps-state ?p4 READY-OUTPUT))

(mps-state ?p4 IDLE)))

Listing 6: The effect of wp-get after reassignment.

For the effect of the macro move-to-get_wp-get, we
need to chain the effects in Listing 3 and Listing 6. In this
case, the resulting effect is simply the conjunction of the two
effects, as shown in Listing 5.
Macro Expansion. Actual task planning is performed us-
ing the augmented domain. Plans may therefore contain
macros as an action. To execute the macro, it is expanded
by replacing it with the original action sequence. Parameters
are bound according to the macro instantiation (the specific
assignment must be retrieved aside from the PDDL specifi-
cation). Execution monitoring can therefore operate in the
same way compared to the case without using macros.
Macro Evaluation. Once macros have been generated,
they must be evaluated to determine whether they are useful.
We perform off-line evaluation by adding (possibly multi-
ple) macros to a domain and solving problems stored in the
database with these macro-augmented domains. The result
is then assessed with evaluation metrics such as mean plan-
ning time or expected execution time. Based on these met-
rics, the best macro configuration is selected. As an exam-
ple, in the Logistics Robots domain, the best configuration
was the domain with two macros with two actions each. In
contrast to the other domains, adding one macro did not im-
prove the planner performance to a great extent, which is
why we decided to add both macros.

4 Initial Results

We evaluated DBMP/S based on three domains from the In-
ternational Planning Competition (IPC): the Hiking and Bar-
man domains from IPC-2014 and the Blocksworld domain
from IPC-2011. For Hiking and Barman, we use the 20 orig-
inal problems. For Blocksworld, we generated 100 random
problem instances with 20 blocks with the problem gener-
ator provided by the competition. For the Logistics Robots
scenario, we generated problems with 0 to 2 orders of each
of the four product complexities resulting in 81 combina-
tions. All instances were used for training and evaluation.2

Computing Setup. We used an in-house Kubernetes3 clus-
ter of 6 machines with a quad-core CPU Intel i7 and 16GB
RAM each. Planning systems are wrapped in Docker con-
tainers scheduled and distributed automatically among the
cluster for execution. Domains, problems, and results are
stored in MongoDB through an adapter program.
Seed Plans. Seed plans for the plan database were gener-
ated using FASTDOWNWARD. We used a configuration that
focuses on plan quality rather than speed to improve macro
quality. For the same reason, it was not used during run-time

2The source code, data sets, and results are available at
http://www.fawkesrobotics.org/p/dbmp-strips.

3Kubernetes website: http://kubernetes.io

501

evaluation. The planner was limited to 60min run-time, 1
CPU thread, and 7GB memory usage. This allowed us to
run 12 planning processes concurrently. Computing seed
plans required about 71 h processing time.
Macros. Macro candidates were identified for each domain.
For this work, we limited the DBMP/S augmented domain
to a single macro of length 2 for all domains but the Logistics
Robots domain, where we used two macros of length 2.
Evaluation. FF and Marvin (without macro library) were
used for the problem instances of the original as well as the
augmented domain, MACROFF (SOL-EP) was run solely on
the original domain. Planners were limited to 1 CPU thread,
4GB memory, and 30min run-time.
Results (Table 1). Already a single (frequently occurring)
macro has a significant impact on solving capabilities and
mean run-time. FF with DBMP/S found more solutions in
shorter times. For example, on the Barman domain, where
FF on the original domain could not find any solutions,
it was able to solve 19 out of 20 problems with the aug-
mented domain and solved most problem instances in less

FF MACROFF Marvin
DBMP/S

(FF)
DBMP/S
(Marvin)

Blocksworld (100 problems)
solved 76 100 93 85 93
mean (s) 25.2 0.72 41.1 11.5 33.0

Q1 (s) 0.006 0.16 0.12 0.006 0.15
Q2 (s) 0.12 0.23 0.23 0.017 0.25
Q3 (s) 124 0.40 0.64 1.57 0.94

Hiking (20 problems)
solved 12 15 15 19 15
mean (s) 260 349 264 196 284

Q1 (s) 91.0 86.6 10.9 5.67 11.8
Q2 (s) 280 339 182 25.6 273
Q3 (s) × 1751 1447 268 1653

Barman (20 problems)
solved 0 0 6 19 20
mean (s) × × 125 4.60 147

Q1 (s) × × 256 2.10 6.76
Q2 (s) × × × 2.96 17.3
Q3 (s) × × × 5.77 35.4

Logistics Robots (81 problems)
solved 4 † 3 4 3
mean (s) 0.156 × 0.74 0.094 0.40

Table 1: Benchmark results for FF, MACROFF, and Mar-
vin without augmented domains, and FF and Marvin with
DBMP/S domains augmented by a single macro of length
2 (limits: 1 CPU thread, 30min run-time, and 4GB RAM).
The results are grouped into one section for each domain.
The rows per section contain the number of problems solved,
the mean time used on solved instances, and the respective
run-time quartile, i.e., after sorting all solved instances by
time ascending, Q1 represents the specific time of the in-
stance at 25 % of the number of all problem instances, Q2
at 50 % (median), and Q3 at 75 %. The best value per row
is indicated with bold face, × denotes no value and † a run-
time error. In the Logistics Robots domain, no planner could
solve 25 % of the problems, thus no quartile is given.

than 10 s. As the Blocksworld domain shows, using macros
does not lead to significant overhead on simple problems.
In the first quartile, FF with DBMP/S performs as well as
FF alone. Compared to MACROFF and Marvin, database-
driven macro planning shows comparable or even slightly
better performance. In the Blocksworld domain, MACROFF
solved most instances and in the shortest mean time. How-
ever, FF with the augmented domain provided better times
on Q1 instances. The overhead of FF with DBMP/S is less
than Marvin’s in Q1.

In the Hiking domain, FF with DBMP/S could solve the
most problems with the shortest mean time. Marvin with
DBMP/S performed slightly worse than without DBMP/S.

The Barman domain shows that on hard domains, FF with
macros has a significant performance advantage compared
to Marvin and MACROFF. In part, this is due to the fact
that we were able to generate seed plans using FASTDOWN-
WARD. Thus, even though FF is not able to solve any prob-
lems in the domain, we are still able to generate macros,
which can then be used by FF. Therefore, the ability to ex-
change planners to generate seed plans offers a critical ad-
vantage, which the other macro approaches cannot.

Finally, in the Logistics Robots domain, only the simplest
problems with a single order could be solved at all. No
macro planner could solve more problems than FF without
macros. MACROFF failed with an error during macro ex-
traction and Marvin could solve only 3 problems, both with
and without DBMP/S macros. FF with DBMP/S macros
solved 4 problems with the shortest mean time.

5 Conclusion
DBMP/S is a novel database-driven approach for macro
planning for STRIPS domains formulated using PDDL.
Collecting plans allows for long-term adaptation to do-
mains that produce repeating action sequences in typical
plans, as can be observed particularly in robotics domains.
These action sequences are identified using the MapRe-
duce paradigm supported by the document-oriented (plan)
database MongoDB, allowing for a scalable way to deter-
mine the frequency (or other criteria) of a vast number of
(sub-)sequences of operators quickly. Common parameters
of actions in the sequence are coalesced to reduce the num-
ber of successor states generated for a macro. From such
operator sequences, macros are formulated as normal PDDL
actions with the proper preconditions and effects.

The approach was evaluated on the IPC domains
Blocksworld, Hiking, and Barman, and the ICAPS Logis-
tics Robots competition scenario. We compared DBMP/S
to planning without macros and other macro planning ap-
proaches. The initial results show that DBMP/S improves
planning performance significantly compared to planning
without macros, even if we restrict the planner to use only
a single macro containing two actions. In comparison to
MACROFF and Marvin, DBMP/S shows similar and im-
proved performance.

The key benefits of our approach are its improved plan-
ning times for domains where seed plans can be generated,
its ability for long-term improvement of planning domains
by collecting and analyzing a growing number of samples

502

from the database, and the ability to use (and exchange) un-
modified PDDL planners for seeding or at run-time.

Acknowledgments

T. Hofmann and T. Niemueller are supported by the Ger-
man National Science Foundation (DFG) research unit
FOR 1513 on Hybrid Reasoning for Intelligent Systems
(http://www.hybrid-reasoning.org).

References

Botea, A.; Enzenberger, M.; Müller, M.; and Schaeffer, J.
2005. Macro-FF: Improving AI planning with automatically
learned macro-operators. Journal of Artificial Intelligence
Research (JAIR) 24.
Botea, A.; Müller, M.; and Schaeffer, J. 2005. Learning
partial-order macros from solutions. In Proceedings of the
15th International Conference on Automated Planning and
Scheduling (ICAPS).
Brenner, M., and Nebel, B. 2009. Continual planning and
acting in dynamic multiagent environments. Autonomous
Agents and Multi-Agent Systems 19(3).
Chrpa, L., and McCluskey, T. L. 2012. On exploiting struc-
tures of classical planning problems: Generalizing entangle-
ments. In Proceedings of the 20th European Conference on
Artificial Intelligence (ECAI).
Chrpa, L.; Vallati, M.; and McCluskey, T. L. 2014. MUM:
A Technique for Maximising the Utility of Macro-operators
by Constrained Generation and Use. In Proceedings of the
24th International Conference on Automated Planning and
Scheduling.
Chrpa, L. 2010. Generation of macro-operators via inves-
tigation of action dependencies in plans. The Knowledge
Engineering Review 25(3).
Coles, A., and Smith, A. 2007. Marvin: A heuristic search
planner with online macro-action learning. Journal of Arti-
ficial Intelligence Research (JAIR) 28.
Coles, A.; Fox, M.; and Smith, A. 2007. Online Identifica-
tion of Useful Macro-Actions for Planning. Artificial Intel-
ligence.
Dawson, C., and Siklóssy, L. 1977. The Role of Prepro-
cessing in Problem Solving Systems. Proceedings of the 5th
International Joint Conference on Artificial Intelligence (IJ-
CAI).
Dean, J., and Ghemawat, S. 2008. MapReduce: Simplified
Data Processing on Large Clusters. Comm. of the ACM 51.
Fikes, R. E.; Hart, P. E.; and Nilsson, N. J. 1972. Learning
and executing generalized robot plans. Artificial Intelligence
3.
Gerevini, A.; Kuter, U.; Nau, D.; Saetti, A.; and Waisbrot,
N. 2008. Combining Domain-Independent Planning and
HTN Planning: The Duet Planner. In Proceedings of the
23rd Conference on Artificial Intelligence (AAAI).
Gerevini, A.; Saetti, A.; and Serina, I. 2003. Planning
through stochastic local search and temporal action graphs
in LPG. Journal of Artificial Intelligence Research (JAIR)
20.

Ghallab, M.; Nau, D.; and Traverso, P. 2004. Automated
planning - theory and practice. Morgan Kaufmann Publish-
ers.
Helmert, M. 2006. The Fast Downward Planning System.
Journal of Artificial Intelligence Research (JAIR) 26.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research (JAIR) 14.
Hofmann, T.; Niemueller, T.; Claßen, J.; and Lakemeyer, G.
2016. Continual Planning in Golog. In Proceedings of the
30th Conference on Artificial Intelligence (AAAI).
McDermott, D.; Ghallab, M.; Howe, A.; Knoblock, C.;
Ram, A.; Veloso, M.; Weld, D.; and Wilkins, D. 1998.
PDDL - The Planning Domain Definition Language.
Nau, D.; Au, T.-C.; Ilghami, O.; Kuter, U.; Murdock, J. W.;
Wu, D.; and Yaman, F. 2003. SHOP2 : An HTN Planning
System. Journal of Artificial Intelligence Research (JAIR)
20.
Newton, M. H.; Levine, J.; Fox, M.; and Long, D. 2007.
Learning macro-actions for arbitrary planners and domains.
In Proceedings of the 17th International Conference on Au-
tomated Planning and Scheduling (ICAPS).
Newton, M. H.; Levine, J.; Fox, M.; and Long, D.
2008. Wizard: Compiled Macro-Actions for Planner-
Domain Pairs.
Niemueller, T.; Karpas, E.; Vaquero, T.; and Timmons, E.
2016. Planning Competition for Logistics Robots in Simu-
lation. In WS on Planning and Robotics (PlanRob) at Int.
Conf. on Automated Planning and Scheduling (ICAPS).
Niemueller, T.; Lakemeyer, G.; and Srinivasa, S. 2012. A
Generic Robot Database and its Application in Fault Analy-
sis and Performance Evaluation. In IEEE International Con-
ference on Intelligent Robots and Systems (IROS).
Nilsson, N. J., and Fikes, R. E. 1972. STRIPS: A new
approach to the application of theorem proving to problem
solving. Artificial intelligence 2.
Pednault, E. 1989. ADL: Exploring the Middle Ground
Between STRIPS and the Situation Calculus. KR.

503

