Multi-Agent Goal Reasoning with the CLIPS Executive in the RoboCup Logistics League ICAART'21

Till Hofmann, Tarik Viehmann, Mostafa Gomaa, Daniel Habering, Tim Niemueller, Gerhard Lakemeyer

Carologistics RoboCup Team

February 4, 2021

Planning and Execution on Mobile Robots

Challenges when reasoning on mobile robots:

- Offline planning is not sufficient
- Robots need to react to a changing environment and adapt their goals
- Action execution is unreliable:
 - Actions may fail
 - Plans may execute faster/slower than expected
- Robots need to coordinate effectively

Planning and Execution on Mobile Robots

Challenges when reasoning on mobile robots:

- Offline planning is not sufficient
- Robots need to react to a changing environment and adapt their goals
- Action execution is unreliable:
 - Actions may fail
 - Plans may execute faster/slower than expected
- Robots need to coordinate effectively

Multi-Agent Goal Reasoning with the CLIPS Executive in the RoboCup Logistics League

The RoboCup Logistics League (RCLL)

- Replication of a smart factory
- In-factory production logistics
- Robots operate machines to manufacture products
- Machines are static, robots are mobile
- Each machine performs one manufacturing step
- Each team consists of three robots

RoboCup Logistics League – Production

Product Composition:

- Products of four complexities (number of rings)
- Base (3 colors) + 0–3 rings (4 colors) + cap (2 colors)
- Machines:

Base Station: retrieve base workpiece Ring Station: mount ring Cap Station: mount cap Delivery Station: deliver product

RoboCup Logistics League – Production

Product Composition:

- Products of four complexities (number of rings)
- Base (3 colors) + 0–3 rings (4 colors) + cap (2 colors)
- Machines:

Base Station: retrieve base workpiece Ring Station: mount ring Cap Station: mount cap Delivery Station: deliver product

Multi-Agent Goal Reasoning with the CLIPS Executive in the RoboCup Logistics League

Goals Goal Trees Expanding Goals into Plans Multi-Agent Coordination

Goal Reasoning with the CLIPS Executive [Niemueller et al., 2019]

Goal reasoning:

- No fixed goal
- Explicitly represent goals
- Continually reason about goals
- Dynamically adjust and prioritize goals
- \rightarrow Reason about *what* to accomplish, only then *how* to accomplish it
 - Goal lifecycle: goal progress during execution

Goals Goal Trees Expanding Goals into Plans Multi-Agent Coordination

Goal Reasoning with the CLIPS Executive [Niemueller et al., 2019]

Goal reasoning:

- No fixed goal
- Explicitly represent goals
- Continually reason about goals
- Dynamically adjust and prioritize goals
- \rightarrow Reason about *what* to accomplish, only then *how* to accomplish it
 - Goal lifecycle: goal progress during execution

Goals Goal Trees Expanding Goals into Plans Multi-Agent Coordination

Goal Reasoning in the RCLL

Main questions:

- I How to represent the RCLL as a goal reasoning problem?
- e How to achieve one specific goal?
- O How to coordinate the three robots?

Goals Goal Trees Expanding Goals into Plans Multi-Agent Coordination

Splitting the RCLL productions into goals

• Observation: tasks can be split up to start and stop at a machine

Goals Goal Trees Expanding Goals into Plans Multi-Agent Coordination

Splitting the RCLL productions into goals

- Observation: tasks can be split up to start and stop at a machine
- A transport goal moves a workpiece from A to B

Goals Goal Trees Expanding Goals into Plans Multi-Agent Coordination

Splitting the RCLL productions into goals

- Observation: tasks can be split up to start and stop at a machine
- A *transport* goal moves a workpiece from A to B

Purpose	Goal Class	Source	Destination
Assembly	MOUNT-RING	BS _{I/O} , RS _O	RSI
Assembly	MOUNT-CAP	RSo	CSI
Assembly	PRODUCE-CO	BS _{I/O}	CSI
Preparation	FILL-CAP	CS _{Shelf}	CSI
Preparation	FILL-RS	BS _{I/O} , CS _O	RS_{Slide}
Preparation	CLEAR-MPS	Any MPS _O	-
Completion	DELIVER	CSo	DSI

Goals Goal Trees Expanding Goals into Plans Multi-Agent Coordination

Splitting the RCLL productions into goals

- Observation: tasks can be split up to start and stop at a machine
- A transport goal moves a workpiece from A to B

Purpose	Goal Class	Source	Destination
Assembly	MOUNT-RING	BS _{I/O} , RS _O	RSI
Assembly	MOUNT-CAP	RSo	CSI
Assembly	PRODUCE-CO	BS _{I/O}	CSI
Preparation	FILL-CAP	CS_{Shelf}	CSI
Preparation	FILL-RS	BS _{I/O} , CS _O	RS_{Slide}
Preparation	CLEAR-MPS	Any MPS _O	-
Completion	DELIVER	CSO	DSI
Preparation Preparation Completion	FILL-RS CLEAR-MPS DELIVER	BS _{I/O} , CS _O Any MPS _O CS _O	RS _{Slide} - DS _I

- Machine instructions can be handled separately
 - \rightarrow separate PREPARE goal that can be executed concurrently

Goals Goal Trees Expanding Goals into Plans Multi-Agent Coordination

Goal Trees

- Simple goals can be structured in a goal tree
- Goal types:

RUN-ALL Run all sub-goals successively, succeed if all sub-goals succeed TRY-ALL Subsequently run all sub-goals until first succeeds RUN-ONE Run one of the sub-goals, outcome is the child's outcome

Goals Goal Trees Expanding Goals into Plans Multi-Agent Coordination

Goal Trees

- Simple goals can be structured in a goal tree
- Goal types:

RUN-ALL Run all sub-goals successively, succeed if all sub-goals succeed TRY-ALL Subsequently run all sub-goals until first succeeds RUN-ONE Run one of the sub-goals, outcome is the child's outcome

Goals Goal Trees **Expanding Goals into Plans** Multi-Agent Coordination

Goal Expansion and Execution using PDDL

- Each goal is expanded into a PDDL plan
- PDDL preconditions are used to verify the expected world state
- PDDL effects update the agent's world model
- Execution monitoring may intervene if
 - an action is not executable
 - an action did not have the expected effects
 - the current plan or goal is no longer feasible

Goals Goal Trees **Expanding Goals into Plans** Multi-Agent Coordination

Goal Expansion and Execution using PDDL

- Each goal is expanded into a PDDL plan
- PDDL preconditions are used to verify the expected world state
- PDDL effects update the agent's world model
- Execution monitoring may intervene if
 - an action is not executable
 - an action did not have the expected effects
 - the current plan or goal is no longer feasible

```
(move (wait-pos ?ds INPUT) ?ds INPUT)
(wp-put ?wp ?ds)
(prepare-ds ?ds ?order)
(fulfill-order ?complexity)
(go-wait ?ds INPUT (wait-pos ?ds INPUT))
```

The plan for a DELIVER goal

Goals Goal Trees Expanding Goals into Plans Multi-Agent Coordination

Multi-Agent Coordination

- Distributed agent: one agent per robot
- \rightarrow Each robot acts on its own
- \rightarrow Need to coordinate
 - Three coordination mechanisms:
 - Shared world model
 - 2 Locking actions
 - Goal resource allocation

Goals Goal Trees Expanding Goals into Plans Multi-Agent Coordination

Shared world model

- Objective: share (some) world model facts among the agents
- Fact-based world model with key-value pairs
- PDDL domain facts are translated into a key-value pair:

- Each agent runs a MongoDB database instance
- Key-value pairs are stored in the database
- Database instances are managed as replica set
- Replica set is automatically synchronized in the background

Goals Goal Trees Expanding Goals into Plans Multi-Agent Coordination

Mutual Exclusion Mechanism

Mutual exclusion using a database:

- Separate database for *mutex documents*
- Updates using majority acknowledgement
- \rightarrow No two agents can acquire a mutex simultaneously

Mutex expiration to avoid a crashed robot holding a mutex:

- A mutex expires after 30 s
- ightarrow After a crash, another robot can take over after the mutex expired
 - Periodic refresh to avoid expiration

Goals Goal Trees Expanding Goals into Plans Multi-Agent Coordination

Locking Actions

```
(:action lock
:parameters (?name - object)
:precondition
  (not (locked ?name))
:effect (locked ?name))
```

```
(:action unlock
:parameters (?name - object)
:precondition
  (locked ?name)
:effect (not (locked ?name)))
```

- Locking actions based on mutexes
- Principle: lock any physical object for any interaction
- Agent waits for a certain time if it cannot acquire the lock immediately
- Specialized action location-lock
 - unlocking is only done after reaching a certain distance to the location

Goals Goal Trees Expanding Goals into Plans Multi-Agent Coordination

Locking Actions

```
(:action lock
:parameters (?name - object)
:precondition
  (not (locked ?name))
:effect (locked ?name))
```

```
(:action unlock
:parameters (?name - object)
:precondition
  (locked ?name)
:effect (not (locked ?name)))
```

- Locking actions based on mutexes
- Principle: lock any physical object for any interaction
- Agent waits for a certain time if it cannot acquire the lock immediately
- Specialized action location-lock
 - unlocking is only done after reaching a certain distance to the location

```
(move (wait-pos ?ds INPUT) ?ds INPUT)
(wp-put ?wp ?ds)
(prepare-ds ?ds ?order)
(fulfill-order ?complexity)
(go-wait ?ds INPUT (wait-pos ?ds INPUT))
```

Goals Goal Trees Expanding Goals into Plans Multi-Agent Coordination

Locking Actions

```
(:action lock
:parameters (?name - object)
:precondition
  (not (locked ?name))
:effect (locked ?name))
```

```
(:action unlock
:parameters (?name - object)
:precondition
  (locked ?name)
:effect (not (locked ?name)))
```

- Locking actions based on mutexes
- Principle: lock any physical object for any interaction
- Agent waits for a certain time if it cannot acquire the lock immediately
- Specialized action location-lock
 - unlocking is only done after reaching a certain distance to the location

```
(go-wait ?start ?side (wait-pos ?ds INPUT))
(location-lock ?ds INPUT)
(move (wait-pos ?ds INPUT) ?ds INPUT)
(lock ?ds)
(wp-put ?wp ?ds)
(prepare-ds ?ds ?order)
(fulfill-order ?complexity)
(unlock ?ds)
(location-unlock ?ds INPUT)
(go-wait ?ds INPUT (wait-pos ?ds INPUT))
```

Goals Goal Trees Expanding Goals into Plans Multi-Agent Coordination

Goal Resource Allocation

- Locking actions are scoped locally, i.e., to guard parts of a plan
- Expectation: The state of the resource is not altered
- $\rightarrow~$ Can perform the same actions on the resource
 - Not suitable for deciding *what to do*,
 - e.g., buffering a cap changes the state of the $\ensuremath{\mathsf{CS}}$

Goals Goal Trees Expanding Goals into Plans Multi-Agent Coordination

Goal Resource Allocation

- Locking actions are scoped locally, i.e., to guard parts of a plan
- Expectation: The state of the resource is not altered
- ightarrow Can perform the same actions on the resource
- Not suitable for deciding *what to do*, e.g., buffering a cap changes the state of the CS
- ⇒ Goal resource allocation: Additional coordination mechanism on goal level
 - Each goal has a set of required resources
 - Agent needs to acquire those resources before dispatching the goal

Goals Goal Trees Expanding Goals into Plans Multi-Agent Coordination

Goals Goal Trees Expanding Goals into Plans Multi-Agent Coordination

Goals Goal Trees Expanding Goals into Plans Multi-Agent Coordination

Goals Goal Trees Expanding Goals into Plans Multi-Agent Coordination

Goals Goal Trees Expanding Goals into Plans Multi-Agent Coordination

Goals Goal Trees Expanding Goals into Plans Multi-Agent Coordination

Goals Goal Trees Expanding Goals into Plans Multi-Agent Coordination

Goals Goal Trees Expanding Goals into Plans Multi-Agent Coordination

Goals Goal Trees Expanding Goals into Plans Multi-Agent Coordination

Goals Goal Trees Expanding Goals into Plans Multi-Agent Coordination

Goals Goal Trees Expanding Goals into Plans Multi-Agent Coordination

Evaluation: Game Scores at RoboCup 2019

- Setting: RoboCup World Cup 2019
- Scores from all official games
- Final result: 1st place

Evaluation: Execution

- High variation in execution time
- $\rightarrow\,$ Distributed and incremental reasoning can react dynamically
 - 28% of the goals eventually failed
 - $\bullet~22\,\%$ of the failed goals could be recovered
 - Robots can react by retrying and taking over
- ⇒ Good performance despite high failure rates

Evaluation: Execution

- High variation in execution time
- $\rightarrow~$ Distributed and incremental reasoning can react dynamically
 - 28% of the goals eventually failed
 - 22% of the failed goals could be recovered
 - Robots can react by retrying and taking over
- ⇒ Good performance despite high failure rates

Conclusion

- Distributed multi-agent goal reasoning system
- Each agent decides on its own goals
- Decide what to do next without creating a plan for the complete problem
- \rightarrow Quickly react to changes during execution
 - Multi-agent coordination based on:
 - A shared world model
 - 2 Locking actions
 - Goal resource allocation
- \rightarrow Effective coordination of a team of three robots

References I

T. Niemueller, T. Hofmann, G. Lakemeyer.

Goal reasoning in the CLIPS Executive for integrated planning and execution.

Proceedings of the 29th International Conference on Automated Planning and Scheduling (ICAPS), 2019.