
A Logic for Specifying Metric Temporal Constraints

for Golog Programs

Till Hofmann
hofmann@kbsg.rwth-aachen.de

Gerhard Lakemeyer
gerhard@kbsg.rwth-aachen.de

Knowledge-Based Systems Group
RWTH Aachen University, Germany

Abstract

Executing a Golog program on an actual
robot typically requires additional platform
constraints to be satisfied. Such constraints
are often temporal, refer to metric time, and
require modifications to the abstract Golog
program. Based on ES and ESG, modal vari-
ants of the Situation Calculus, we propose the
logic t-ESG, a logic which allows the specifica-
tion of metric temporal constraints for Golog
programs. We provide a comparison to ESG
and show that Metric Temporal Logic (MTL)
can be embedded into t-ESG. We show how
to formulate constraints using a model of the
robot platform, and we sketch a procedure that
solves those constraints using Simple Temporal
Networks (STNs).

1 Introduction

While Golog [14], an agent programming language
based on the Situation Calculus [15, 20], allows a clear
and abstract specification of an agent’s behavior, exe-
cuting a Golog program on a real robot often creates
additional issues. Typically, the robot’s platform re-
quires additional constraints that are ignored when
designing a Golog program. As an example, a robot
needs to calibrate its arm before it can use it, and it
needs to enable its perception module before it inter-
acts with its environment. Developers typically face
two options: First, they can directly model all the
platform details in the basic action theory (BAT) and

Copyright c© by the paper’s authors. Copying permitted for
private and academic purposes.

In: G. Steinbauer, A. Ferrein (eds.): Proceedings of the 11th
International Workshop on Cognitive Robotics, Tempe, AZ, USA,
27-Oct-2018, published at http://ceur-ws.org

add respective actions to their programs, e.g., they
can enable the perception before a pick action and
disable it afterwards again. However, this makes the
behavior specification much more complex and error-
prone. If the program involves some form of planning
or search, the platform details may cause performance
degradation, as the search space’s size is increased by
the additional actions. Additionally, most of these plat-
form details are not specific to one particular program,
but to the platform. Any change to the platform needs
to be reflected in the behavior specification. As an
alternative, the developers may decide to use Golog
for an abstract behavior specification and deal with
the platform details on the lower levels. However, this
is often not possible, as platform constraints require
changes to the high-level program, and thus the pro-
gram cannot be clearly separated from the platform it
is running on.

In this paper, we propose a different approach: As
before, the agent’s behavior is specified with an abstract
program. However, based on platform models as shown
in Figure 1, we construct a maintenance BAT that
allows to specify a set of additional constraints on the
platform. The abstract plan from the original Golog
program is then transformed into an executable action
sequence that satisfies the platform constraints.

The main ideas of this approach were sketched in
[10]. In the following, we focus on the logical founda-
tions that allow the specification of metric temporal
constraints. Our starting point is the logic ESG [6], a
temporal variant of ES [13], which in turn is a modal
variant of the Situation Calculus. We extend ESG by
metric time, quantitative temporal operators similar
to Metric Temporal Logic (MTL) [12], and additional
temporal operators previous and since, which refer to
past states in the same way as next and until refer to
future states. We show the relationship between ESG
and t-ESG and we provide an embedding of MTL into
t-ESG. Next, we show how to describe a BAT and an

1

Off

Uncalibrated

Error

Calibrating Calibrated Parked

Busy

start calibrate()
5s park()

move()[0, 10]s

move()

Figure 1: A finite state machine as a platform model
for the arm. The edges are annotated with their action
and time bounds. Adapted from [10].

abstract Golog program in t-ESG and how to formu-
late metric temporal platform constraints with t-ESG.
Finally, we sketch how to resolve those constraints with
a Simple Temporal Network (STN) to transform the
abstract program into an executable action sequence.

2 Foundations & Related Work

The Situation Calculus [15, 20] is a first-order logic
for representing and reasoning about actions. Action
preconditions and effects are axiomatized with basic
action theories and situations are histories of actions,
e.g., the situation term do(pick(o1), S0) refers to the
situation after doing action pick(o1) in the initial situa-
tion. The programming language Golog [14] is based
on the Situation Calculus and offers imperative pro-
gramming constructs such as sequences of actions and
iteration as well as non-deterministic branching and
non-deterministic choice. The semantics of Golog
and its on-line variant IndiGolog can be specified in
terms of transitions [7].

The logic ES [13] is a modal variant of the Situa-
tion Calculus which gets rid of explicit action terms
and uses modal operators instead. As an example,
[pick(o1)]Holding(o1) is satisfied iff Holding(o1) is true
after doing pick(o1). The logic ESG [6, 5] is a temporal
extension of ES for the verification of Golog programs.
It specifies program transition semantics similar to the
transition semantics of IndiGolog and extends ES
with the temporal operators X (next) and U (until).

The Situation Calculus has also been extended by a
notion of time. Reiter requires each action A to have an
explicit time argument, i.e., each action is of the form
A(~x, t) [19]. Durative actions are modeled with start
and stop actions, and the time of the last occurrence of
an action can be referred by time(A(~x, t)). Reiter also
extends the Situation Calculus with concurrency, e.g.,
do({end pick(o1), start goto(kitchen)}, s) refers to the
situation after ending the action pick(o1) and at the
same time start moving to the kitchen. A similar ap-
proach is described by [18], which also allows temporal
reasoning about situations. In particular, they differ-
entiate between possible and actual evolvements of the

current situation by adding axioms for a distinct pred-
icate actual , where actual(s) is true iff s is an actual
evolvement of the world. This differentiation is impor-
tant, because otherwise, we could not express much
about the future; as long as there is a possible action
that causes a formula α to be false, we cannot state
that α is true in the next situation, even if the agent
has no intention (e.g., it is not the next action in the
Golog program) to execute the action. As we will see,
this problem does not occur in ESG or t-ESG.

MTL [12] is an extension of Linear Time Logic (LTL)
with metric time, which allows expressions such as F≤c ,
meaning eventually within time c. In MTL, formulas
are interpreted over timed words or timed state se-
quences, where each state specifies which propositions
are true, and each state has an associated time value.
Depending on the choice of the state and time theory,
the satisfiability problem for MTL becomes undecid-
able [2]. However, for finite words, it has been shown to
be decidable [16]. MTL has been restricted to Metric
Interval Temporal Logic (MITL) [3], which prohibits
singular intervals and is interpreted over time intervals
instead of time points, which makes the satisfiability
problem for MITL decidable. MTLP [4] is an extension
of MTL with temporal operators referring to the past,
e.g., V (preVious) and S (Since).

Simple Temporal Networks (STNs) [8] provide an
efficient procedure to solve a constraint problem given
by a set of time-points {ti} and a set of binary temporal
constraints of the form tj − ti ≤ δ. Disjunctive Linear
Relations (DLRs) [11] allow more expressive temporal
constraints; the restricted Horn DLRs can be solved in
polynomial time and still subsume STNs.

Similar to the proposed approach, Schiffer, Wort-
mann, and Lakemeyer extend Golog for self-
maintenance [21] by allowing temporal constraints us-
ing Allen’s Interval Algebra [1]. Those constraints are
resolved on-line by interleaving the original program
with maintenance actions. Closely related is also the
work by [9], who propose a hybrid approach of temporal
constraint reasoning and reasoning about actions based
on the Situation Calculus. Similar to [21], they allow
constraints based on Allen’s Interval Algebra, which
are translated into a temporal constraint network.

3 Timed ESG

In this section, we present the syntax and semantics
of t-ESG. As t-ESG is based on ESG, its syntax and
semantics are also based on ESG and ES. We refer to
[13, 6, 5] for more details on the original syntax and
semantics.

2

3.1 Syntax

Definition 1 (Language of t-ESG). The language con-
sists of formulas over symbols from the following vo-
cabulary:

1. object variables x1, x2, x3, . . . , y1, . . .

2. action variables a, a1, a2, a3, . . .

3. number variables t1, t2, t3, . . .

4. object standard names NO = {o1, o2, o3, . . .}

5. action standard names NA = {p1, p2, p3, . . .}

6. number standard names NN = {0, 1, 2, 12 , . . .};
here, we assume NN = Q

7. fluent predicates of arity k: Fk : {fk1 , fk2 , . . .},
e.g., Holding ; we assume this list contains the
distinguished predicates Poss and <

8. rigid functions of arity k: Gk = {gk1 , gk2 , . . .}, e.g.,
goto; including distinguished functions +, · ∈ G2

9. fluent object functions of arity k: Hk =
{hk1 , hk2 , . . .}, e.g., parent

10. fluent number functions of arity k: Ik =
{ik1 , ik2 , . . .}, e.g., battery ; including distinguished
functions time ∈ I1 and now ∈ I0

11. open, closed, and half-closed intervals, e.g., [1, 2],
with constants of sort number as interval endpoints

12. connectives and other symbols: =, ∧, ∨, ¬, ∀,
XI ,VI , UI , SI (with interval I), �, [·], J·K

We also write F for the set
⋃

k∈N0
Fk, similarly for

G,H, I. We also denote the set of standard names as
N = NO ∪ NA ∪ NN . Furthermore, we call a term
primitive if it is of the form f(n1, . . . , nk), with f, ni
being standard names. We denote the set of primitive
terms as PO (objects), PA (actions), and PN (numbers),
and P = PO ∪ PA ∪ PN .

We read XI as next (within interval I), VI as
previously (within interval I), UI as until (within
interval I), and SI as since (within interval I).

Definition 2 (Terms of t-ESG). The set of terms of
t-ESG is the least set such that

• every variable is a term of the corresponding sort,

• every standard name is a term of the corresponding
sort,

• if t1, . . . , tk are terms and f is a k-ary function
symbol, then f(t1, . . . , tk) is a term of the same
sort as f .

Definition 3 (Programs).

δ ::= t | α? | δ1; δ2 | δ1|δ2 | πx. δ | δ1‖δ2 | δ∗

where t is an action term and α is a static situation
formula. A program consists of primitive actions t, tests
α?, sequences δ1; δ2, nondeterministic branching δ1|δ2,
nondeterministic choice of argument πx. δ, interleaved
concurrency δ1‖δ2, and nondeterministic iteration δ∗.

Definition 4 (Situation Formulas). The situation for-
mulas are the least set such that

1. if t1, . . . , tk are terms and P is a k-ary predicate
symbol, then P (t1, . . . , tk) is a situation formula,

2. if t1 and t2 are terms, then (t1 = t2) is a situation
formula,

3. if α and β are situation formulas, x is a variable,
P is a predicate symbol, δ is a program, and φ is
a trace formula, then α ∧ β, ¬α, ∀x. α, �α, [δ]α,
and JδKφ are situation formulas.

We call a situation formula of the form P (n1, . . . , nk)
with ni ∈ N a primitive formula and denote the set of
primitive formulas as PF .

Definition 5 (Trace Formulas). The trace formulas
are the least set such that

1. if α is a situation formula, then it is also a trace
formula,

2. if φ and ψ are trace formulas, x is a variable, and
I is an interval, then φ∧ψ, ¬φ, ∀x. φ, XI φ, VI φ,
φSI ψ, and φUI ψ are also trace formulas.

We also write < c, ≤ c, = c, > c, and ≥ c for the
respective intervals [0, c), [0, c], [c, c], (c,∞), and [c,∞).

We use the short-hand notation FI φ
def
= (>UI φ)

(future) and GI φ
def
= ¬FI ¬φ (globally), as well as

PI φ
def
= (>SI φ) (past) and HI φ

def
= ¬PI ¬φ (histor-

ically). For intervals, c + [s, e] denotes the interval
[s + c, e + c], similarly for c + (s, e), c + [s, e), and
c+ (s, e]. We also omit the interval I if I = [0,∞), e.g.,
φU ψ is short for φU[0,∞) ψ.

Definition 6 (Static Formulas). A situation formula
α is static if it contains no [·], �, or J·K operators.

Definition 7 (Bounded Formulas). A situation for-
mula α is bounded if it contains no � or J·K operators,
and [t] operators only in case the argument is an atomic
action t.

Definition 8 (Fluent Formulas). A situation formula
α is fluent if it is static and contains no predicate Poss .

3

3.1.1 Comparison to ESG

The language of t-ESG extends the language of ESG
by the constrained temporal operators XI and UI .
Also, ESG has no operators referring to the past; i.e.,
no V or S (or their constrained variants VI and SI).
Finally, as we understand X φ (φU ψ) as short-hand
notation for X[0,∞) φ (φU[0,∞) ψ), the language of ESG
is a subset of t-ESG.

3.2 Semantics

Definition 9 (Timed Traces). A timed trace is a pos-
sibly infinite timed sequence of action standard names
with monotonically non-decreasing time. Formally, a
trace π is a mapping π : N → PA ×NN , and for any
i, j ∈ N with π(i) = (σi, ti), π(j) = (σj , tj) : If i < j,
then ti ≤ tj . Also, we require the sequence (ti)i∈N to
be non-Zeno, i.e., it is either finite or unbounded.

For a finite timed trace z = 〈(a1, t1) · (a2, t2) · . . . ·
(ak, tk)〉, we define time(z)

def
= tk, i.e., time(z) is the

time value of the last action in z. We denote the set of
finite timed traces as Z, the set of infinite timed traces
as Π, and the set of all traces as T = Z ∪Π.

Definition 10 (World). Intuitively, a world w deter-
mines the truth of fluent predicates as well as the
value of fluent functions, not just initially, but after
any (timed) sequence of actions. Formally, a world
is a mapping w that maps (1) PF × Z → {0, 1},
(2) PO ×Z → NO, and (3) PN ×Z → NN .

Similar to ES and ESG, the truth of a fluent after
any sequence of actions is determined by a world w.
Different to ES and ESG, we require all traces referred
by a world to contain time values for each action. This
also means that in the same world, a fluent predicate
F (~n) may have a different value after the same sequence
of actions if the actions were executed at different times,
i.e., w[F (~n, 〈(a1, 1)〉] may have a different value than
w[F (~n, 〈(a1, 2)〉].

Definition 11 (Denotation of terms). Given a ground
term t, a world w, and a timed trace z ∈ Z, we define
|t|zw by:

1. if t ∈ N , then |t|zw = t,

2. if t = now , then |t|zw = time(z),

3. if t = time(a(t1, . . . , tk)), then |t|zw = max {ta |
(a(n1, . . . , nk), ta) ∈ z} ∪ {0}, where ni = |ti|zw,

4. if t = f(t1, . . . , tk) then |t|zw = w[f(n1, . . . , nk), z],
where ni = |ti|zw

Note the special denotation for the function symbols
now ∈ I0 and time ∈ I1. The term now always refers

to the current time, while time(A(~x)) refers to the time
of the last occurrence of A(~x), or 0 if the action has
never occurred.

Definition 12 (Program Transition Semantics). The

transition relation
w→ among configurations, given a

world w, is the least set satisfying

1. 〈z, a〉 w→ 〈z · (p, t) ,nil〉, if p = |a|zw, t ≥ time(z),
and w, z · (nil , t) |= Poss(p)

2. 〈z, δ1; δ2〉
w→ 〈z · p, γ; δ2〉, if 〈z, δ1〉

w→ 〈z · p, γ〉,

3. 〈z, δ1; δ2〉
w→ 〈z ·p, δ′〉 if 〈z, δ1〉 ∈ Fw and 〈z, δ2〉

w→
〈z · p, δ′〉

4. 〈z, δ1|δ2〉
w→ 〈z · p, δ′〉 if 〈z, δ1〉

w→ 〈z · p, δ′〉 or

〈z, δ2〉
w→ 〈z · p, δ′〉

5. 〈z, πx. δ〉 w→ 〈z · p, δ′〉, if 〈z, δxn〉
w→ 〈z · p, δ′〉 for

some n ∈ Nx

6. 〈z, δ∗〉 w→ 〈z · p, γ; δ∗〉 if 〈z, δ〉 w→ 〈z · p, γ〉

7. 〈z, δ1‖δ2〉
w→ 〈z · p, δ′‖δ2〉 if z, δ1

w→ 〈z · p, δ′〉

8. 〈z, δ1‖δ2〉
w→ 〈z · p, δ1‖δ′〉 if z, δ2

w→ 〈z · p, δ′〉

The set of final configurations Fw is the smallest set
such that

1. 〈z, α?〉 ∈ Fw if w, z |= α,

2. 〈z, δ1; δ2〉 ∈ Fw if 〈z, δ1〉 ∈ Fw and 〈z, δ2〉 ∈ Fw

3. 〈z, δ1|δ2〉 ∈ Fw if 〈z, δ1〉 ∈ Fw, or 〈z, δ2〉 ∈ Fw

4. 〈z, πx. δ〉 ∈ Fw if 〈z, δxn〉 ∈ Fw for some n ∈ Nx

5. 〈z, δ∗〉 ∈ Fw

6. 〈z, δ1‖δ2〉 ∈ Fw if 〈z, δ1〉 ∈ Fw and 〈z, δ2〉 ∈ Fw

The program transition semantics is very similar to
the semantics of ESG. The only difference is in Rule 1,
which has an additional constraint on the time, and
which requires the action to be executable.

Definition 13 (Program Traces). Given a world w
and a finite sequence of action standard names z, the
set ‖δ‖zw of (timed) traces of a program δ is

‖δ‖zw =

{z′ ∈ Z | 〈z, δ〉 w→
∗
〈z · z′, δ′〉 and 〈z · z′, δ′〉 ∈ Fw}∪

{π ∈ Π | 〈z, δ〉 w→ 〈z · π(1), δ1〉
w→ 〈z · π(2), δ2〉

w→ . . .

where for all i ≤ 0, 〈z · π(i), δi〉 /∈ Fw}

Definition 14 (Truth of Situation and Trace Formu-
las). Given a world w ∈ W and a situation formula α,
we define w |= α as w, 〈〉 |= α, where for any z ∈ Z:

4

1. w, z |= F (t1, . . . , tk) iff w[F (n1, . . . , nk), z] = 1,
where ni = |ti|zw,

2. w, z |= (t1 = t2) iff n1 and n2 are identical, where
ni = |ti|zw,

3. w, z |= α ∧ β iff w, z |= α and w, z |= β

4. w, z |= ¬α iff w, z 6|= α

5. w, z |= ∀x. α iff w, z |= αx
n for all n ∈ Nx

6. w, z |= �α iff w, z · z′ |= α for all z′ ∈ Z

7. w, z |= [δ]α iff for all finite z′ ∈ ‖δ‖zw, w, z · z′ |= α

8. w, z |= JδKφ iff for all τ ∈ ‖δ‖zw, w, z, τ |= φ

Intuitively, [δ]α means that after every execution of δ,
the situation formula α is true. JδKφ means that during
every execution of δ, the trace formula φ is true.

The truth of trace formulas φ is defined as follows
for w ∈ W, z ∈ Z, and τ ∈ T :

1. w, z, τ |= α iff w, z |= α and α is a situation
formula,

2. w, z, τ |= φ ∧ ψ iff w, z, τ |= φ and w, z, τ |= ψ,

3. w, z, τ |= ¬φ iff w, z, τ 6|= φ,

4. w, z, τ |= ∀x. φ iff w, z, τ |= φxn for all n ∈ Nx,

5. w, z, τ |= XI φ iff there is p ∈ PA with τ = p · τ ′,
w, z · p, τ ′ |= φ, and time(p) ∈ time(z) + I,

6. w, z, τ |= VI φ iff z = z′ · p for some p ∈ PA,
w, z′, p · τ |= φ, and time(z) ∈ time(z′) + I,

7. w, z, τ |= φUI ψ iff there is a z1 such that

(a) τ = z1 · τ ′,
(b) time(z1) ∈ time(z) + I,

(c) w, z · z1, τ ′ |= ψ,

(d) for all z2 6= z1 with z1 = z2 · z3: w, z · z2, z3 ·
τ ′ |= φ

8. w, z, τ |= φSI ψ iff there is a z1 such that

(a) z = z1 · z2,

(b) time(z) ∈ time(z1) + I,

(c) w, z1, z2 · τ |= ψ,

(d) for all z3 6= 〈〉 with z2 = z3 · z4: w, z1 · z3, z4 ·
τ |= φ

We shortly explain the intuitive meaning of the
temporal operators:

• XI φ is true iff φ holds at the next state (i.e., after
the next action), which must be within interval I.

• VI φ is true iff φ holds at the previous state (i.e.,
before the last action), which must be within in-
terval I.

• φUI ψ is true iff there is a state in the future
within interval I where ψ is true, and in all states
before that, φ must be true.

• φSI ψ is true iff there is a state in the past within
interval I where ψ is true, and in all states between
that state and the current state, φ must be true.

Note that trace formulas are only interpreted over
actual traces of the program δ. Thus, a formula X α is
true even if there is a possible action a that renders α
to be false, as long as a does not occur in δ. Therefore,
there is no need for a distinct predicate actual(s) as
used by [18].

Definition 15 (Satisfiability). A situation formula α
is satisfiable iff there is a world w such that

w |= α

Definition 16 (Validity). A situation formula α is
valid iff for any world w: w |= α. We also write |= α
for a valid situation formula α. A trace formula φ is
valid iff for any world w and any trace τ : w, 〈〉, τ |= φ.
We also write |= φ for a valid trace formula φ.

4 t-ESG and ESG
In the following, we compare the first-order fragment
of ESG to t-ESG. To distinguish the semantics of ESG
and t-ESG, we denote the respective semantics with a
subscript whenever necessary, e.g., Zt-ESG denotes the
finite traces of t-ESG. We assume a slightly different
program transition semantics for ESG: For an action
term a, we only allow the transition 〈z, a〉 w→ 〈z · p,nil〉
if w, z |= Poss(p); the program can only transition from
action a to nil if action a is currently possible. For-
mally, we replace Rule 1 of the ESG program transition
semantics by the following rule:

1. 〈z, a〉 w→ 〈z · p,nil〉 if p = |a|zw and w, z |= Poss(p)

This is similar to replacing each primitive action a in a
program δ by Poss(a)?; a as done by [6]. Additionally,
as time and now have a special meaning in t-ESG, we
assume wlog that α does not mention either of them.
Apart from that, syntax and semantics of ESG are
similar to t-ESG, but without constrained temporal
operators (e.g., no XI , only the unconstrained variant
X), and without any past temporal operators (V and
S). We refer to [6, 5] for the full ESG syntax and
semantics.

Theorem 1. Let α be a first-order sentence of ESG
that does not mention time or now. If |=t-ESG α, then
also |=ESG α.

5

Proof. We show that if there is an ESG world w and
an ESG trace z ∈ ZESG with w, z 6|= α, then there is
a t-ESG world wt and a t-ESG trace zt ∈ Zt-ESG with
wt, zt 6|= α.

Let w be an ESG world and z = 〈a1, . . . , ak〉 ∈ ZESG
such that w, z 6|= α. We construct wt and zt with
wt, zt |= α iff w, z |= α as follows: Let wt be a
t-ESG world such that for every ρ ∈ P and every
z′t = 〈(a′1, t′1) , (a′2, t

′
2) , . . . ,

(
a′j , t

′
j

)
〉:

wt[ρ, 〈(a′1, t′1) , (a′2, t
′
2) , . . . ,

(
a′j , t

′
j

)
〉]

= w[ρ, 〈a′1, a′2, . . . , a′j〉]

In other words, wt agrees with w on any primitive fluent
after any sequence of actions irrespective of the time.
Additionally, we set zt = 〈(a1, 1) , (a2, 2) , . . . (ak, k)〉.
First, we need to show that |p|zw = |p|ztwt

for any term
p occurring in α. We do this by induction over p:

• Let p ∈ N . Then |p|zw = |p|ztwt
= t.

• Let p = f(p1, . . . , pl).
Then, by definition of | · |, |p|zw = w[f(n1, . . . , nl)z]
with ni = |pi|zw. By induction, |pi|ztwt

= |pi|zw,
and thus |pi|ztwt

= ni. Also, by definition of
wt, wt[f(n1, . . . , nl), zt] = w[f(n1, . . . , nl), z], and
thus |p|ztwt

= |p|zw.

Note that p cannot mention now because α does not
mention now .

Now, we show by induction over α that wt, zt |= α
iff w, z |= α.

• Let α = F (p1, . . . , pl). As shown:
|pi|ztwt

= |pi|zw. Therefore, by definition of
wt, wt[F (p1, . . . , pl), zt] = w[F (p1, . . . , pl), z], and
thus wt, zt |= α iff w, z |= α.

• Let α = (p1 = p2). With |pi|ztwt
= |pi|zw, it follows

that |p1|ztwt
= |p2|ztwt

iff |p1|zw = |p2|zw, and thus
wt, zt |= α iff w, z |= α.

• Let α = β ∧ γ. By induction, wt, zt |= β iff w, z |=
β and wt, zt |= γ iff w, z |= γ. As the semantics of
the connective ∧ do not differ between ESG and
t-ESG, it follows that wt, zt |= α iff w, z |= α.

• Let α = ¬β. By induction: wt, zt |= β iff w, z |= β.

• Let α = ∀x. α. By induction, for each n ∈ Nx:
wt, zt |= αx

n iff w, z |= αx
n. As ESG and t-ESG

use the same standard names Nx, it follows that
wt, zt |= α iff w, z |= α.

• Let α = �β. Assume w, z 6|= α. Then there is a
z′ ∈ ZESG with w, z · z′ 6|= β. Let z′ = 〈a′1, . . . , a′j〉.
Then, we set z′t = 〈(a′1, k + 1) , . . . ,

(
a′j , k + j

)
〉 ∈

Zt-ESG . By induction, wt, zt · z′t 6|= β.

For the other direction, assume wt, zt 6|= α.
Then there is z′t = 〈(a′1, k + 1) , . . . ,

(
a′j , k + j

)
〉 ∈

Zt-ESG with wt, zt ·z′t 6|= β. By induction, it follows
that for z′ = 〈a′1, . . . , a′j〉: w, z · z′ 6|= β.
Therefore, w, z |= �β iff wt, zt |= �β.

• Let α = [δ]β. First, note that

‖δ‖ztwt
= {〈(a′1, t′1) , (a′2, t

′
2) , . . . ,

(
a′j , t

′
j

)
〉 | (1)

〈a′1, a′2, . . . , a′j〉 ∈ ‖δ‖zw,
ti ∈ NN , t1 ≥ time(zt), for i < j : ti ≤ tj}

This follows from the fact that the program transi-
tion semantics ‖ · ‖ differs from ESG to t-ESG only
in Rule 1, where we add a constraint on time. As α
does not mention now or time, the additional con-
straint only enforces monotonically non-decreasing
time.
Now, assume there is z′ = 〈a′1, . . . , a′l〉 ∈ ‖δ‖zw with
w, z · z′ 6|= β. Then z′t = 〈(a′1, t′) , . . . , (a′l, t′)〉 ∈
‖δ‖ztwt

with t′ = time(z). By induction, wt, zt ·z′t 6|=
β.
For the other direction, assume there is z′t =
〈(a′1, t′1) , . . . , (a′l, t

′
l)〉 ∈ ‖δ‖ztwt

with wt, zt · z′t 6|= β.
Then z′ = 〈a1, . . . , al〉 ∈ ‖δ‖zw and by induction:
w, z · z′ 6|= β. Thus, w, z |= [δ]β iff wt, zt |= [δ]β.

• Let α = JδKβ. First, note that Equation 1 also
holds for infinite traces.
Let τ ∈ ‖δ‖zw be an arbitrary trace with τ =
〈a′1, a′2, . . .〉, then τt = 〈(a′1, t′1) , (a′2, t

′
2) , . . .〉 ∈

‖δ‖ztwt
for arbitrary ti with the constraints from

Equation 1. We show by sub-induction over φ:
w, z, τ |= φ iff wt, zt, τt |= φ.

– Let φ = β be a situation formula. Then by
induction: w, z |= β iff wt, zt |= β.

– Let φ = φ1 ∧ φ2. As in the case for the situa-
tion formula, the semantics of the connective
∧ do not differ between ESG and t-ESG.

– Let φ = ¬ψ. By sub-induction: w, z, τ |= ψ
iff wt, zt, τt |= ψ.

– Let φ = ∀x. ψ. Again, as ESG and t-ESG
use the same standard names, we can fol-
low by sub-induction: Nx, w, z, τ |= ψx

n iff
wt, zt, τt |= ψx

n for every n ∈ Nx.

– Let φ = X ψ. Assume w, z, τ |= X ψ.
There is p ∈ PA with τ = p · τ ′ such
that w, z · p, τ ′ |= ψ. Then there is a
tp ≥ time(zt) such that τt = (p, tp) · τ ′t . By
induction, wt, zt · (p, tp) , τ ′ |= ψ. Further-
more, in t-ESG, X is short-hand for X[0,∞) .
As tp ∈ time(zt) + [0,∞), it follows that
wt, zt, τt |= X ψ.

6

Now, assume wt, zt, τt |= X ψ. There is
p ∈ NA with τt = (p, tp) · τ ′t such that
tp ≥ time(zt) and wt, zt · (p, tp) , τ ′t |= ψ. By
Equation 1, there is a τ ′ = 〈a′1, . . .〉 such that
τ = p · τ ′ and τ ′t = 〈(a′1, t′1) , . . .〉. Then, by
induction: w, z · p, τ ′ |= ψ.

– Let φ = ψ1 U ψ2. First, note that in t-ESG,
U stands for U[0,∞) , thus there are no con-
straints on the time. Similar to the previous
case, we can construct pairs (zi, zt,i), such
that w, z · zi, τ ′ |= ψ iff wt, zt · zt,i, τ ′t |= ψ,
same for φ. Thus, by induction, w, z, τ |=
φU ψ iff wt, zt, τt |= φU ψ.

Note that the other direction of the theorem is not
true; a valid sentence in ESG is not necessarily valid in
t-ESG. As an example, consider the sentence

α = [A]F ∨ [A]¬F

In ESG, α is valid, because for each w, either w |= [A]F
or w |= [A]¬F , as w[F, 〈A〉] is either 0 or 1. However,
in t-ESG, α is not valid. Consider a world wt of t-ESG
with w[F, 〈(A, 0)〉] = 0 and w[F, 〈(A, 1)〉] = 1, i.e., if
A is performed at time 0, then F is false, but if it is
performed at time 1, then F is true. Thus, w 6|= [A]F ,
but also w 6|= [A]¬F , and therefore w 6|= α.

5 t-ESG and MTL

We show that MTL is part of t-ESG. We do this by
translating a timed word ρ of MTL into an t-ESG world
w. First, we summarize MTL and its pointwise seman-
tics following the notation by [17].

Definition 17 (Formulas of MTL). Given a set P of
atomic propositions, the formulas of MTL are built as
follows:

φ ::= p | ¬φ | φ ∧ φ | φUI φ

Definition 18 (Pointwise semantics of MTL). Given
an alphabet of events Σ, a timed word ρ is a finite or
infinite sequence (σ0, τ0) (σ1, τ1) . . . where σi ∈ Σ and
τi ∈ R+ such that the sequence (τi) is monotonically
non-decreasing1 and non-Zeno.

Given a timed word ρ = (σ, τ) over alphabet 2P

and an MTL formula φ, ρ, i |= φ is defined as usual
for the boolean operators, and with the following rule
for UI : ρ, i |= φ1 UI φ2 iff there exists j such that
(1) i < j < |ρ|, (2) ρ, j |= φ2, (3) τj − τi ∈ I, and
(4) ρ, k |= φ1 for all k with i < k < j.

Theorem 2. Let φ be a sentence of MTL. Then |=t-ESG
φ iff |=MTL φ.

1Some variants of MTL require (τi) to be strictly increasing,
which can be represented in t-ESG by requiring strictly increasing
traces.

Proof. We assume wlog that P ⊆ F 0, i.e., atomic
propositions of MTL are 0-ary fluents of t-ESG. Given
a t-ESG world w and a trace π, we construct a timed
word ρ such that w, 〈〉, π |=t-ESG φ iff ρ |=MTL φ, and
vice versa.

⇒: Let w be a t-ESG world and π a trace. We construct
the timed word ρ = (σ, τ) as follows:

1. Set τ0 = 0 and σ0[p] = w[p, 〈〉] for every p ∈ P .

2. For every i ∈ N : For π(i) = (ai, ti), set τi = ti.

3. For every finite prefix zi = 〈(a1, t1) , . . . , (ai, ti)〉
of π and every p ∈ P , set σi[p] = w[p, zi].

We show that w, zi, π |=t-ESG φ iff ρ, i |= φ by induction
over φ.

• Let φ = pi be an atomic formula. The claim
follows by definition of ρ.

• Let φ = ¬ψ. By induction, w, zi, π |= ψ iff ρ, i |=
ψ, so the claim follows.

• Let φ = φ1 ∧ φ2. By induction, w, zi, π |= φ1 iff
ρ, i |= φ1, same for φ2.

• Let φ = φ1 UI φ2.

First, assume w, zi, π |= φ1 UI φ2. Then there is a
zj with π = zj ·π′ such that time(zj) ∈ time(zi)+I,
w, zi · zj , π′ |= φ2, and for all zk 6= zj with zj =
zk · zl: w, zi · zk, zl · π′ |= φ1. Then, by definition
of ρ: ρ, i + j |= φ2, τj ∈ I, and for all k with
i < i+k < i+ j, ρ, i+k |= φ1. Thus, by definition
of MTL’s UI : ρ, i |= φ1 UI φ2.

Now, assume ρ, i |= φ1 UI φ2. Similar to the
previous case: There is a j with i < j < |ρ|,
ρ, j |= φ2, τj − τi ∈ I, and for all k with i < k < j:
ρ, k |= φ1. Then, by definition of ρ, there is a
zj with π = zj · π′ and: w, zi · zj , π′ |= φ1. Fur-
thermore, time(zi · zj) ∈ time(zi) + I, and for all
zk 6= zj with zj = zk · zl: w, zi · zk, zl · π′ |= φ2.
Thus, w, zi, π |= φ1 UI φ2.

⇐: Given a timed word ρ = (σ, τ), we construct the
world w and trace π as follows:

1. π(i) = (a, τi)

2. w[p, 〈〉] = σ0[p] for every p ∈ P

3. w[p, 〈(a, τ1) , (a, τ2) , . . . , (a, τi)〉] = σi[p] for every
i ∈ N and every p ∈ P

Analogously to above, we show that w, zi, π |=t-ESG φ
iff ρ, i |= φ by induction over φ.

7

6 Basic Action Theories

Similarly to ES and ESG, a t-ESG BAT is a set of sen-
tences describing the initial situation and the agent’s
actions with their preconditions and effects.

Definition 19 (Basic Action Theory). Given a set of
fluent predicates F , a set Σ ⊆ t-ESG of sentences is
called a basic action theory over F iff Σ = Σ0 ∪ Σpre ∪
Σpost, where Σ mentions only fluents in F and

1. Σ0 is any set of fluent sentences,

2. Σpre is a set of fluent formulas with free variable
a,

3. Σpost is a set of sentences, with one sentence of
the form �[a]f(~x) ≡ γf for each fluent predicate
f ∈ F , and one sentence of the form �[a]f(~x) =
v ≡ γf for each f ∈ H ∪ I, and where γf is a
fluent formula.

In a BAT, Σ0 describes the initial situation, Σpost

is a set of successor state axioms, and Σpre is a set of
precondition axiom for all actions in the domain that is
understood disjunctively, i.e., from Σpre, we construct
a single precondition axiom of the form �Poss(a) ≡∨

Σpre. This is slightly different to ES and ESG and
allows us to combine multiple basic action theories.

6.1 A Simple Carrier Robot

We present a BAT of a simple robot that can move
around and pick up and put down objects. All actions
are modeled as durative actions with start and stop
actions.

Σpre = {
∃s, g. a = start goto(s, g) (2)

∧ ¬∃a′.Performing(a′),

∃s, g. a = end goto(s, g)∧ (3)

Performing(goto(s, g))∧
now ≥ time(goto(s, g)) + d(s, g),

∃o, l. a = start pick(o)∧ (4)

RobotAt(l) ∧At(o, l),

∃o. a = end pick(o)∧ (5)

Performing(pick(o))∧
now ≥ time(pick(o)) + 3,

∃o, l. a = start put(o, l)∧ (6)

Holding(o) ∧ RobotAt(l),

∃o, l. a = end put(o, l)∧ (7)

Performing(put(o, l))∧
now ≥ time(put(o, l)) + 2

}

The precondition axiom states that the robot can
(2) start goto if it is currently not performing any
action, (3) stop goto (and reach its destination) if it
was moving at least d(s, g) time units, (4) start pick-
ing an object if it as the same location as the object,
(5) end picking an object if it started picking at least 3
time units ago, (6) start putting an object to a loca-
tion if it is holding the object and it is at the location,
(7) end putting an object if it started putting at least 2
time units ago. Additionally, ending any action is only
possible if the robot is currently performing the action.

The robot’s actions have effects on the following
predicates:

�[a]RobotAt(l) ≡ (8)

∃s. a = end goto(s, l))∨
RobotAt(l) ∧ ¬∃s′, g′. a = start goto(s′, g′)

�[a]At(o, l) ≡ (9)

a = end put(o, l) ∨At(o, l) ∧ a 6= start pick(o)

�[a]Holding(o) ≡ (10)

a = end pick(o)∨
Holding(o) ∧ a 6= start pick(o)

�[a]Performing(a′) ≡ (11)

a = a′ ∧
(

∃s, g [a = start goto(s, g)]∨
∃o [a = start pick(o)]∨
∃o [a = start put(o)])
∨ Performing(a′)∧
¬∃s, g [a = end goto(s, g)]∧
¬∃o [a = end pick(o)]∧
¬∃o [a = end put(o)]

The successor state axioms state that (8) the robot
is at location l if it stops doing a goto with l as goal
location, or if it was at that location and did not start
moving anywhere else, (9) an object o is at location
l if the robot ends putting o to l or if the object was
there before and is not being picked up, (10) the robot
is holding object o if ends picking up o or if it was
holding the object before and does not start putting it
down, (11) the robot is performing action a′ if it starts
a′ or it has been performing a′ and does not end a′.

As usual in Golog, we define while and if then
else as macros:

while φ do δ done
def
= (φ?; δ)∗;¬φ?

if φ then δ1 else δ2 fi
def
= [φ?; δ1] | [¬φ?; δ2]

if φ then δ1 fi
def
= if φ then δ1 else nil fi

The BAT already allows us to define simple Golog

8

if ¬RobotAt(table) then
πs. start goto(s, table); end goto(s, table)

fi
while ∃oAt(o, table) do
πo.At(o, table)?;

start pick(o); end pick(o);
start goto(table, shelf); end goto(table, shelf);
start put(o, shelf); end put(o, shelf);

start goto(shelf , table); end goto(shelf , table);
done

Listing 1: An abstract program to clear all objects
from the table.

programs. The program shown in Listing 1 picks up all
objects from the table and puts them onto the shelf.

Given the following initial situation:

Σ0 = {RobotAt(shelf),

At(obj1 , table),

At(obj3 , shelf),

d(shelf , table) = 20, d(table, shelf) = 20,

∀o. (o 6= obj1 ∧ o 6= obj3) ⊃ ¬∃l.At(o, l)}

We can infer that:

Σ |= [δ]¬∃o.At(o, table)

Σ |= [δ]RobotAt(table)

Following the program transition semantics, one
possible successful trace of δ is:

z = 〈 (start goto(table), 0) , (end goto(table), 20) ,

(start pick(obj1), 20) , (end pick(obj1), 23) ,

(start goto(shelf), 23) , (end goto(shelf), 43) ,

(start put(obj1), 43) , (end put(obj1), 45)〉

7 Timed Temporal Constraints

Listing 1 already shows an abstract program that clears
the table. However, to execute the program on a real
robot, additional constraints must be satisfied, e.g.,
the robot’s perception module needs to be enabled
before an object is picked up or put down. Instead
of encoding this in the abstract BAT, we provide an
additional maintenance BAT which takes care of these
kinds of constraints. Such a maintenance BAT may be
generated from platform models as shown in Figure 1,

a simplified version may look as follows:

ΣM
pre = {

a = start calibration∧ (12)

state(arm) 6= calibrating∧
state(arm) 6= calibrated ,

a = end calibration∧ (13)

time(start calibration) ≥ 5 ∧
state(arm) = calibrating ,

a = start perception∧ (14)

state(perception) 6= running

a = stop perception∧ (15)

state(perception) = running}

�[a]state(arm) = s ≡ (16)

a = start calib ∧ s = calibrating ∨
a = end calib ∧ s = calibrated ∨
s = state(arm) ∧
a 6= start calib ∧ a 6= end calib

�[a]state(perception) = s ≡ (17)

a = start perception ∧ s = running ∨
a = stop perception ∧ s = paused ∨
s = state(perception) ∧
a 6= start perception ∧ a 6= stop perception

ΣM
0 = {state(arm) = uncalibrated

state(perception) = paused}

Using the maintenance BAT, we can formulate a set
of additional constraints that must be satisfied during
the execution of any program δ:

JδKG
[
∃o.Performing(pick(o)) (18)

⊃ state(arm) = calibrated
]

JδKG
[
∃o, l.Performing(put(o, l)) (19)

⊃ state(arm) = calibrated
]

JδKG
[
∃o.Performing(pick(o)) (20)

⊃ H≤1 state(perception) = running
]

JδKG
[
¬F≤1 ∃o, l.(Performing(pick(o)) (21)

∨ Performing(put(o, l)))

⊃ state(perception) = paused)
]

The constraints state that (18) if the robot is per-
forming a pick action, then the arm must be calibrated,
(19) if the robot is performing a put action, then the

9

arm must be calibrated, (20) if the robot is perform-
ing a pick action, then the perception must have been
running for at least 1 second, (21) if the robot is not
performing a pick or put action in the next second,
then the perception should be paused.

start

start goto(table)

end goto(table)

start pick(o1)

end pick(o1)

start goto(shelf)

end goto(shelf)

[20,∞]

[3,∞]

[20,∞]

Figure 2: The initial STN.

7.1 The Constraint Language

As constraint language, we allow a subset of t-ESG.

Definition 20 (Constraint). Given a BAT Σ and a
maintenance BAT ΣM . Let φ be a fluent trace formula
only mentioning terms from Σ. Let ψ be a fluent trace
formula only mentioning terms from ΣM . Then the
formula θ = φ ⊃ ψ is a constraint formula.

Intuitively, we interpret a constraint φ ⊃ ψ as fol-
lows: As φ is from the abstract BAT and we can only
add actions from ΣM to our action sequence, φ is given.
Therefore, if φ is true, we need to add maintenance
actions such that ψ is also satisfied. In other words,
we cannot satisfy a constraint by making φ false.

Definition 21 (Constraint Satisfaction). Given a pro-
gram δ and a BAT Σ, we say that a constraint θ is
satisfied by δ iff

Σ |= JδKG θ

7.2 Solving Timed Temporal Constraints

Using the example above, we now sketch a procedure
that modifies a given action sequence of an abstract
program to also satisfy the platform constraints. First,
we convert the action sequence into a STN, where each
action of the sequence is a node in the STN. Such a
STN for the program in Listing 1 is shown in Figure 2.

For each node starting at the start node, we now
check whether each constraint is satisfied. As an

start

start goto(table)

end goto(table)

start pick(o1)

end pick(o1)

start goto(shelf)

end goto(shelf)

[20,∞]

[3,∞]

[20,∞]

end calibrate

start calibrate

start perception

stop perception

[5,∞]

[1,∞]

[0, 0]

Figure 3: The STN after all constraints have been
checked and respective maintenance actions have been
added.

example, in the node start pick(o1), Constraint 18
is not satisfied. From the platform models, we can
generate an action sequence that satisfies the con-
straint. In our example, by searching the state au-
tomaton in Figure 1, we can generate the sequence
〈start calibrate, end calibrate〉, which is then added to
the STN. Similarly, the perception needs to be running
before doing a pick. Thus, the action start perception
is added to the STN. By Constraint 20, the perception
must have been running for at least 1 second. Thus,
the edge from start perception to start pick(o1) has
the time constraint [1,∞]. The resulting STN after
checking all STN nodes and all constraints is shown in
Figure 3.

8 Conclusion

We presented t-ESG, a logic for reasoning about ac-
tions that allows the specification of metric temporal
constraints. t-ESG extends ESG with metric time and
temporal operators referring to the past. We showed
that Metric Temporal Logic (MTL) can be embedded
into t-ESG, while ESG cannot be fully embedded into
t-ESG.We presented a constraint language for specify-
ing metric temporal constraints on a platform model,
and we sketched a translation of those constraints into
Simple Temporal Networks (STNs). Using the solu-
tion of the STN, the abstract Golog program can be
transformed into an action sequence that is executable
on the robot platform, thereby allowing the separation
of the abstract agent behavior specification and the
details of the platform, even if they are inter-dependent.

10

Acknowledgements

T. Hofmann was supported by the German National
Science Foundation (DFG) under grant number GL-
747/23-1.

References

[1] James F Allen. Maintaining Knowledge About
Temporal Intervals. Communications of the ACM,
26(11):832–843, 1983.

[2] R. Alur and T.A. Henzinger. Real-Time Logics:
Complexity and Expressiveness. Information and
Computation, 104(1):35–77, 1993.

[3] Rajeev Alur, Tomás Feder, and Thomas A. Hen-
zinger. The Benefits of Relaxing Punctuality. Jour-
nal of the ACM, 43(1), 1996.

[4] Rajeev Alur and Thomas A. Henzinger. Back to
the Future: Towards a Theory of Timed Regular
Languages. In Proceedings of the 33rd Annual
Symposium on Foundations of Computer Science,
pages 177–186, 1992.

[5] Jens Claßen. Planning and Verification in the
Agent Language Golog. PhD thesis, RWTH Aachen
University, 2013.

[6] Jens Claßen and Gerhard Lakemeyer. A Logic for
Non-Terminating Golog Programs. In Proceedings
of the 11th International Conference on Principles
of Knowledge Representation and Reasoning (KR),
pages 589–599, 2008.

[7] Giuseppe De Giacomo, Yves Lespérance, Hector J
Levesque, and Sebastian Sardina. IndiGolog: A
High-Level Programming Language for Embedded
Reasoning Agents. In Multi-Agent Programming.
Springer, 2009.

[8] Rina Dechter, Itay Meiri, and Judea Pearl. Tem-
poral Constraint Networks. Artificial Intelligence,
49(1-3):61–95, 1991.

[9] Alberto Finzi and Fiora Pirri. Representing Flexi-
ble Temporal Behaviors in the Situation Calculus.
In Proceedings of the 19th International Joint Con-
ference on Artificial Intelligence (IJCAI), pages
436–441, 2005.

[10] Till Hofmann, Victor Mataré, Stefan Schif-
fer, Alexander Ferrein, and Gerhard Lakemeyer.
Constraint-Based Online Transformation of Ab-
stract Plans into Executable Robot Actions. In
AAAI Spring Symposium: Integrating Representa-
tion, Reasoning, Learning, and Execution for Goal
Directed Autonomy, 2018.

[11] Peter Jonsson and Christer Bäckström. A Unify-
ing Approach to Temporal Constraint Reasoning.
Artificial Intelligence, 102(1):143–155, 1998.

[12] Ron Koymans. Specifying Real-Time Properties
with Metric Temporal Logic. Real-Time Systems,
2(4):255–299, 1990.

[13] Gerhard Lakemeyer and Hector J Levesque. Situ-
ations, Si! Situation Terms, No! In Proceedings of
the 9th International Conference on Principles of
Knowledge Representation and Reasoning (KR),
pages 516–526, 2004.

[14] Hector J. Levesque, Raymond Reiter, Yves Les-
perance, Fangzhen Lin, and Richard B. Scherl.
GOLOG: A Logic Programming Language for Dy-
namic Domains. Journal of Logic Programming,
31(1-3), 1997.

[15] John McCarthy. Situations, Actions, and Causal
Laws. Technical report, Stanford University, 1963.

[16] J. Ouaknine and J. Worrell. On the Decidability
of Metric Temporal Logic. 20th Annual IEEE
Symposium on Logic in Computer Science (LICS’
05), pages 188–197, 2005.

[17] Joël Ouaknine and James Worrell. Some Recent
Results in Metric Temporal Logic. Lecture Notes
in Computer Science, 5215 LNCS:1–13, 2008.

[18] Javier Pinto and Raymond Reiter. Reasoning
About Time in the Situation Calculus. Annals
of Mathematics and Artificial Intelligence, 14(2-
4):251–268, 1995.

[19] Raymond Reiter. Natural Actions, Concurrency
and Continuous Time in the Situation Calculus.
In Proceedings of the 5th International Conference
on Principles of Knowledge Representation and
Reasoning (KR), pages 2–13, 1996.

[20] Raymond Reiter. Knowledge in Action: Logical
Foundations for Specifying and Implementing Dy-
namical Systems. MIT Press, 2001.

[21] Stefan Schiffer, Andreas Wortmann, and Gerhard
Lakemeyer. Self-Maintenance for Autonomous
Robots controlled by ReadyLog. In Proceedings of
the 7th IARP Workshop on Technical Challenges
for Dependable Robots, 2010.

11

