
Rheinisch-Westfälische Technische Hochschule Aachen
Knowledge-based Systems Group
Prof. Gerhard Lakemeyer, Ph. D.

Master’s Thesis

Centralized Goal Reasoning And Scheduling
Using Mixed Integer Programming for

Logistics Robots

Mostafa Ashraf Gomaa

Aug 7, 2020

Advisor: Till Hofmann, M. Sc.
Supervisors: Prof. Gerhard Lakemeyer, Ph. D.

Prof. Dr. Matthias Jarke

Contents

1 Introduction 6

2 Background 9
2.1 RoboCup Logistics League . 9
2.2 Operational Research . 10

2.2.1 Allocation Problem (Routing) . 12
2.2.2 Temporal Sequencing . 15
2.2.3 MIP solving . 17

2.3 Resource Scheduling . 19
2.4 Planning . 21

2.4.1 Classical and Non-Classical Planning 22
2.4.2 Domain Definition Language (PDDL) 22

2.5 Goal Reasoning Model . 23
2.5.1 CLIPS Executive . 23

2.6 Incremenetal Goal Reasoning . 24

3 Related Work 26

4 Approach 28
4.1 Overview . 29
4.2 Resource Declaration . 30
4.3 The Goal Reasoner . 32

4.3.1 The Expanded Goal-Tree . 32
4.3.2 The Scheduled Goal-Tree . 33
4.3.3 Execution . 34

4.4 The Scheduler . 35
4.4.1 Pre-processing . 35
4.4.2 Event-based representation . 36
4.4.3 MIP Model . 39

Event-times Te . 41
Selectors Zs . 41
Resource allocation sequence Xr,i,j 42

4.5 Implementation . 43
4.5.1 Goal Reasoning Model . 44

Model Extensions . 44
Goal Life-cycle . 44

2

4.5.2 Scheduling Model . 45
Event-based representation . 45
Schedule Life-cycle . 47
Setup Durations . 48
Lower-bound Calculation . 48
Post Processing . 48

4.5.3 MIP Model Generation . 49
Solution Processing . 51

4.5.4 Execution . 52
Locking . 53
Remote Executors . 53
Partially Instantiated Actions . 53

4.6 Evaluation . 54
4.6.1 Duration Estimates . 55
4.6.2 Execution Delay . 57
4.6.3 Optimality and optimality gap . 58
4.6.4 Different orders . 58

4.7 Conclusion . 60

Bibliography 61

3

Acronyms

BILP Binary Integer Linear Optimization Problems. 11

BS Base Station. 9, 10

CO Combinatorial Optimization. 11

CPA Critical Path Analysis. 16, 17

CPS Cyber-Physical Systems. 6

CS Cap Stations. 10

CX CLIPS Executive. 6, 7, 9, 23, 24, 27, 53

DS Delivery Station. 9

IIoT Industrial Internet of Things. 6

ILP Pure Integer Linear Optimization Problems. 11

IoH Internet of Humans. 6

IoT Internet of Things. 6

LP Linear Programming. 9, 11, 12, 13, 15, 16, 17

MILP Mixed Integer Linear optimization Problem. 11, 12, 27

MIP Mixed Integer Programming. 2, 3, 7, 9, 10, 11, 12, 17, 18, 28, 29, 30, 35, 36, 39,
40, 43, 44, 45, 49, 51, 60

MPS Modular Production Systems. 6, 9, 10, 12, 16, 29, 31, 33, 52

OR Operational Research. 10, 11, 12, 16, 19

PDDL Planning Domain Definition Language. 22, 26, 30, 31, 35, 38, 40, 44, 53

RCLL RoboCup Logistics League. 6, 7, 9, 10, 12, 13, 14, 16, 21, 24, 26, 27, 28, 29, 30,
31, 54, 60

4

RS Ring Stations. 9

STN Simple Temporal Network. 26

TSP Traveling Salesmen. 11, 15

VRP Vehical Routing Problem. 15

5

1 Introduction

Industry 4.0 is a term introduced by the German federal government during its 2011
initiative [13] describing what they predicted to be the fourth industrial revolution.
Industry 4.0 is characterized by a paradigm shift from centrally controlled to decentral-
ized production processes enabled through the communication between people, machines
and resources via Internet of Things (IoT) and Internet of Humans (IoH) [11]. Hermann
et al. [11] identified four design principles highlighting industry 4.0 scenarios; intercon-
nection, information transparency, technical assistance and decentralized decisions. A
Smart Factory is an industry 4.0 application, where decentralized decisions are made
by context-aware Cyber-Physical Systems (CPS) interconnected via Industrial Internet
of Things (IIoT). Context-aware production agents autonomously determine and pursue
short and long term production goals, while utilizing the resources available in their
environment.

RoboCup Logistics League (RCLL) is an industrial test bed that replicates a smart
factory environment and the production processes therein. Two teams of autonomous
robotic agents compete in the production of a dynamically updated list of orders. Robots
perform the production by transporting workpieces between a set of team-specific Mod-
ular Production Systems (MPS), capable of performing various production operations.
Orders arrive online with a variety of production recipes, deadlines and rewards. Since
more orders arrive than could be produced, a team’s selection strategy of which orders to
pursue, as well as its ability to utilize the resources available during production, directly
influences the competitiveness of a team (determined by the production score they are
able to achieve during game time).

To that end, the Carologistics 1 team (the current world champion of‘ the RCLL) main-
tains a distributed incremental goal reasoning agent [12]. The agent is implemented
using the rule-based CLIPS Executive (CX) [25] that uses a goal reasoning model to
guide the program flow via a goal life-cyle. Agents reason locally to come up with pro-
duction tasks allowed incrementally by the environment. An idle agent assigns itself
to the most important task available at the time of reasoning. The importance of a
task is determined beforehand by domain experts and coded as static task priorities.
Distributed agents reason locally and assign production tasks to themselves, then con-
sequently coordinate the access to the resources required for the task. This is achieved
by locking the resources needed for the duration of the task.

1https://www.carologistics.org/

6

Due to its robustness, the current CX agent has been able to achieve remarkable results.
Nevertheless, it achieves sub-optimal behavior, which explains why its competitiveness is
recently challenged by the advancements in the approaches of other teams. The current
distributed approach uses the resources in a greedy fashion, without anticipating their
future availability. Moreover, its incremental-reasoning nature lacks coordinating the
work done by different agents towards a common deliberated goal. This is bound to
waste many opportunities for concurrency allowed by the domain.

This thesis focuses on improving RCLL order production, using a centralized goal-
reasoner equipped with a resource scheduler. The scheduler dynamically parses a goal-
tree into a corresponding MIP formulation. The MIP model encodes the scheduling
problem as a network of production events, and multiple layers of resource flow (i.e.,
multi commodity flow). The presented MIP formulation is solved to optimality in real-
time, minimizing the make-span of production.

This thesis develops a centralized goal-reasoning and scheduling approach, that deliber-
ate a global goal, then schedules the usage of resources by sub-goals, in order to minimize
the execution duration of the deliberated goal. The developed approach extends on the
incremental goal reasoning agent developed by the Carologistics team. The central goal
reasoner formulates a goal tree of tasks, performable by single robots, to produce an or-
der. Causal relations of sub-goals model the precedence of tasks. An integrated scheduler
parses the goal-tree and uses a MIP solver to find an optimal solution for the scheduling
problem, in real-time. The reasoner supervises the execution of the scheduled goal-tree
in compliance with a sub-goal execution schedule, and resource allocation schedules (a
schedule per resource). Individual actions are dispatch for remote execute by (the allo-
cated) distributed agents. The developed integrated system is a centralized global goal
reasoner and resource scheduler that maintains decentralized execution.

A Mixed Integer Programming (MIP) formulation is presented, modeling the complex
scenarios found in an RCLL order production. The model encodes a goal tree of produc-
tion tasks, as a network of (possible) events with commodity requirements and prece-
dence relations. Estimates for traveling and operation durations are incorporated. The
objective is to minimize the completion time of the last event (i.e., the makespan or
production).

Our approach is evaluated against the incremental agent in a number of simulation runs.
It was shown that our approach outperforms the incremental agent when travailing time
consumes a big ratio of production time. It also out performs it when complex produc-
tions sequence are required. Our approach shows stability to changes in configurations,
robot speeds and order complexity. Our executed goal-tree does not break as a result of
unexpected schedule violations (due to poor estimates of real world uncertainty).

This thesis is structured into three main sections. Section 2, gives an overview of the
theoretical foundations, and the frameworks where the implementation is to be realized.
Section 3, covers work related to our approach. Section 4, presents the conceptual model

7

of our approach and elaborates on implementation aspects. Section 4.7, gives a summery
and conclusion of our approach.

8

2 Background

This section gives a detailed overview of the theoretical foundation necessary to un-
derstand the approach developed in this thesis. This thesis focus on scheduling the
production tasks on an RCLL order. Section 2.1 introduces the RCLL domain and
order production.

This thesis develops a scheduling mode which dynamically interacts with a MIP solver
to generate a MIP formulation of the scheduling problem, and solve it to optimality.
Section 2.2 introduces MIP and the solver used by our approach; it demonstrates simple
LP models for the two main sub-problems found in resource scheduling, the allocation
(routing) and sequencing sub-problems. Section 2.3 covers theoretical aspects of the
Resource Scheduling problem.

Our scheduling model is integrated within a centralized goal reasoning model. The goal
reasoner initially encodes the production tasks as a goal-tree. A sub-goal is expanded
(via a plan library) into different plans. Section 2.4 introduces basic concepts from
Automated Planning. Section 2.5, introduces the goal reasoning model and the CLIPS
Executive (CX) framework which approach extends.

2.1 RoboCup Logistics League

The RoboCup Logistics League (RCLL) simulates a smart factory scenario with an
added element of dual team competition. Two teams of three autonomous robotic agents
compete in completing the production duties of a dynamically posted set of orders. An
order defines the required quantity and delivery time window of a specific production
assembly recipe. Scores are awarded for completed production steps, leading to the
delivery of a finished product (RCLL rulebook [3]).

A product is assembled of a base workpiece; up to three colored rings; a colored cap. The
difficulty level of producing an order belongs to one of three complexity classes. The
simplest (C0) is a capped base (no rings required). Orders of higher complexities (C1,
C2 and C3) are harder to produce. They require the assembly of a number of rings
(indicated by their name).

There are essentially four different MPS types capable of different types of operations. A
Base Station (BS) dispenses the base workpieces. A Delivery Station (DS) consumes the
finished products and unneeded workpieces. Two Ring Stations (RS), each is responsible

9

for assembling two available ring colors. Two Cap Stations (CS), each is responsible for
assembling a cap, buffered at the station at an earlier point.

Even though a workpiece goes through a strict chain of production operations, some
MPS’s need to be prepared before performing an operation. To mount a cap, a CS is
first buffered via dismantling of a cap-carrier (stored at a shelf). Ring assembly requires
varying quantities of raw material as payment, prior to the operation; raw materials is be
obtained from one of several locations (e.g., BS, CS shelf or any disposable workpiece).

For each team, six team-MPS’s are operated by (up to three) autonomous robots. A
robot transports a single workpiece at a time, forming a virtual conveyor belt between the
MPS’s. Moreover, a robot communicates with the MPS’s in order to instruct them for
performing an operation. RCLL provides a realistic test bed where robotic autonomous
agents are responsible for communicating and operating cyber-physical systems in a
dynamic environment. A competitive strategy depends in large on a teams ability to
utilize the resources during a game, in order to achieve the highest production score.
This involves making complex decisions and acting efficiently in a dynamic environment
with many uncertainties.

This thesis focuses on minimizing the total duration of order production, by dynamically
solving MIP formulation, integrated into a centralized goal reasoning and scheduling
model.

2.2 Operational Research

OR (or decision science) is a sub-field of applied mathematics concerned with the applica-
tion of mathematical methods to the study and analysis of problems involving complex
systems [20]. It employs methods (such as mathematical modeling, network analysis
and combinatorial optimization) to quantify and optimize the complex-decisions in such
systems. Nyor et al. [26] provides a comprehensive yet general introduction to OR.

A smart factory is such a complex system, giving rise to several well-studied OR prob-
lems. Autonomous agents are required to make complicated decisions about the future
and the usage of resources. This thesis presents a MIP formulation which encodes the
scheduling problem found in the RCLL domain, in order to improve the real-time task
allocation of a team of mobile robots, autonomously operating a smart factory.

Mathematical Optimization OR is often interested in finding the ”best possible” deci-
sion, restricted by the system’s constraints. An optimization problem is one of maximiz-
ing or minimizing a function of several variables (Objective function), subject to equality
and inequality constraints and integrality restriction.

10

Feasible Solutions A feasible solution (or feasible subset) for a mathematical model
is a set of values specifying an assignment to the variables of a model, which satisfies
the model’s constraints. A feasible solution is a subset of the feasible set (represented
geometrically as a single point in the feasible region of a model).

Feasible Regions A feasible region (or feasible set) is the set of all points specified by
a feasible solution. i.e., it is the set of all feasible subsets.

Optimal Solutions An optimal solution is a feasible solution that gives the best possible
value for a desirable objective function.

Combinatorial Optimization (CO) is the problem of finding an optimal solution from
a finite set of feasible solutions (the feasible region is finite or countably infinite [29]).
Since the feasible set is usually very large, an enumeration and exhaustive search are not
viable options. Discrete optimization is considered to consist of integer optimization and
CO. Integer optimization is concerned with the efficient allocation of limited resources
(which can only be discretely divided) to meet a desired objective. A CO problem is
formally defined by a ground set ε of objects and a set of associated costs c. The optimal
solution is to find an ’allowed’ selection of elements from the ground set that has highest
(or lowest) additive cost possible. i.e., From a set F of subsets ε (the feasible set of
feasible subsets), the optimal solution is the subset F ⊂ ε where F ∈ F that yields the
maximum (or minimum) value for c(F) =

∑
e∈F ce [23] [14].

Some of the common problems that have combinatorial nature are Knapsack problem,
Traveling Salesmen (TSP), and Resource Scheduling.

Mixed Integer Programming MIP is the most widely accepted modeling technique in
OR, used to formulate the decision processes over several variables, in order to meet a
desired objective. Mathematical Programming models aim to maximize or minimize a
certain objective function subject to a set of inequality and equality constraints. Linear
Programming (LP) is the simplest sub-class to solve, since all variables of a model are
continuous. Binary Integer Linear Optimization Problems (BILP) is a model where all
variables are binary. Pure Integer Linear Optimization Problems (ILP) occur when the
variables are only allowed to have integer values. Mixed Integer Linear optimization
Problem (MILP) models contain variables of all the previous types (continuous and
discrete).

11

Objective

max
∑
j∈B

cjxj +
∑
j∈I

cjxj +
∑
j∈C

cjxj

Subject to

∑
j∈B

cjxj +
∑
j∈I

cjxj +
∑
j∈C

cjxj

=
≤
≥

 bj ∀i ∈M (2.1)

lj ≤ xj ≤ uj ∀j ∈ N = B ∪ I ∪ C (2.2)
xj ∈ {0, 1} ∀j ∈ B (2.3)
xj ∈ Z ∀j ∈ I (2.4)
xj ∈ R ∀j ∈ C (2.5)

Nemhauser and Wolsey [23] and L. Hoffman and K. Ralphs [14] provide a general formu-
lation of a MILP problem. B, I and C are the sets of indices for the binary, integer and
continuous variables xj , respectively. Constants lj and uj are lower and upper bounds
for the values of the variable xj , j ∈ N . The objective function is a weighted sum where
cj ∈ N are constants. A set of variable assignments that satisfies (2.1) to (2.5) is is
called a feasible solution. A feasible solution that yields the maximum (or minimum)
possible value to the objective function is called an optimal solution.

The problem of optimally scheduling the production sub-goals of an RCLL order, on a
set of shared resource (i.e., MPSs and robots) is a combinatorial optimization problem.
Combinatorial optimization problems are realized via MIP models, since they requires
making discrete decision. The scheduling problem consists of an allocation (routing)
sub-problem as well as a sequencing sub-problems. It is convenient to first view each
sub-problem independently. Even though, the presented MIP formulation solves the
allocation and sequencing sub-problems in unison, each individual sub-problem could be
realized vi LP formulation.

2.2.1 Allocation Problem (Routing)

In the RCLL production, the decision of allocating which of the identical robots transport
a workpiece between which MPSs , depends on their expected availability at expected
locations. This section gives an intuition into modelling the routing sub-problem, by
presenting a simple LP network model.

Commodity Flow Network A commodity flow network is often used in OR to model
nodes of geographic locations, connected by arcs modeling transportation capacities and
unit costs of distributing a commodity (or multiple different commodities) through the

12

underlying network. A commodity can flow through the arcs, with a known unit cost
for each, starting at a source node that supplies it, satisfying a demand at a sink node;
possibly passing through transit nodes on several paths. The decision version of the
problem is that of planning the flow rate of the commodity through each arc; to optimize
a certain objective (e.g., minimize total flow cost). The problem can be modeled in terms
of ensuring the flow conservation (i.e., material balance) at each node.

Material balance (continuity) constraint 1. A type of constraint often used to
represent that the sum total of the quantities going into some process equals the sum
total coming out. It takes the form

∑
j xj −

∑
i yi = 0.

Minimum Cost Flow It is the problem of finding the flow rate of a commodity through
each arc of a flow network, satisfying all demand; with an objective of minimizing the
additive cost. Edges may have lower or upper bound restrictions on their capacities
(Capacitated min. cost flow). Common distribution problems are specializations of this
problem. The transportation problem considers a (bipartite) network where the com-
modities flow directly from sources to sinks. In the transshipment problem, commodities
are allowed to flow through transit sources/sink before arriving to the consumer. The
assignment problem is a bipartite graph where sources have an availability of single unit
and sinks have a requirement of single unit. The shortest path problem is reduced to
finding the flow of a single unit of commodity from a source to a sink.

Figure 2.1 shows an example of a min. cost flow network abstracted from the RCLL
domain. The network depicts the problem of finding the shortest path of flow for a
single robot between the production tasks of a C0 order. The source supplies the robot
commodity at a starting location. The sink represents the robot, idling at an end
location. Each production task, represented by an intermediate node, has different start
and end locations (i.e., the robot picks a workpiece from a start location, releasing it at
an end, possibly different, location). The direction and the wight of the arcs convey the
traveling duration from an end location of a task to a start location of another. Since
the costs are sequence dependent, the direction of the arc matters (e.g., finishing task 1
then starting task 4 (from CSI to CSO) is different than finishing task 4 then starting
task 1 (from DSI to BSI).

The problem gives rise to an LP model where each constraint models the material balance
requirement at a node (constraints 2 and 3) and the objective is to minimize the total
cost sum of all edges (equation 1).

13

0

(EnterFeild)

+1

1
(GetBase)

2
(LoadCap

3
(ClearCap

4
(Deliver)

-1

(Score)

20s

10s

10s

0s

50s

10s
40s

30s

30s

0s

Figure 2.1: Flow network of a single robot commodity, supplied at a source location, through
the locations of tasks producing a C0 RCLL order, satisfying the demand at sink location.

Sets
E = {1, ..n} Ground set of locations e
Ce Subset of nodes i ∈ E − e directly reachable from node e ∈ E
Pe Subset of nodes j ∈ E − e that can directly reach node e ∈ E
S ∈ E Source of the commodity
Z ∈ E Sink of the commodity

Parameters
∆i,j Travailing Duration from node i ∈ E to node j ∈ E

Decision variables
Xi,j The quantity of flow in the edge connecting nodes i, j ∈ E

Objective: Minimize
∑

i

∑
j

∆ijXij i, j ∈ E (2.6)

Constraint: ∑
i∈Ce

Xei −
∑

j∈Pe

Xej = 1 e ∈ {s, z} (2.7)

∑
i∈Ce

Xei −
∑

j∈Pe

Xej = 0 e ∈ E − {s, z} (2.8)

14

This abstract example does not model dependence relations between the tasks; nor
that all tasks must be executed. (e.g., getting a base after delivering is an valid path
so long as it minimizes the objective). Some of those relations where modeled by only
depicting arcs which do not contradict a causal relation. Extending the example to
consider the restriction that the robot must visit all tasks, results in the combinatorial
Traveling Salesmen (TSP) problem. Extending it further allowing different paths by
different robots, results in the combinatorial Vehical Routing Problem (VRP).

2.2.2 Temporal Sequencing

Further considering durations and precedence relations of tasks and their sequencing on
limited resources, results in different variations of the scheduling combinatorial prob-
lems. A simpler version of temporally sequencing activities, is to sequence them by only
considering their causal relations; which yields a simple LP network model.

T0
(start all)

T11 (at BS-I)

T12 (WP picked)

T13 (at CS-I)

T14 (WP fed)

PICK(10s)

MOVE{BS-I > CS-I}(30s)

FEED(10s)

T21 (at CS-S)

T22 (WP picked)

T23 (at CS-I)

T24 (WP fed)

PICK(10s)

MOVE{CS-S > CS-I}(10s)

FEED(10s)

T31 (at CS-O)

T32 (WP picked)

PICK(10s)

T41 (at CS-O)

T42 (WP picked)

T43 (at DS-I)

T44 (WP fed)

TScore
(score awarded)

PICK(10s)

MOVE{CS-O > DS-I}(40s)

FEED(10s)

(0s)

(0s)

(0s)

(0s)

(0s)

Figure 2.2: Event network of C0 order

15

Critical Path Analysis (CPA) CPA is a network model used in OR to find the shortest
duration needed to execute a group of temporally inter-dependent activities in a project.
The analysis answers questions about the temporal restrictions in a project, such as ear-
liest and latest start dates (i.e., slack) for activities. In a network of events, connected
by directed weighted arcs of activities and temporal precedence, the longest path in the
network (i.e., the critical path) determines the total duration needed for executing a
project. Activities falling on the critical path can not be delayed without causing a delay
in the project.

The event network in Figure 2.2 depicts a partially ordered plan, of producing a C0 order,
in the RCLL. Durative actions are depicted by the weighted arcs connecting event nodes,
where the costs are action durations. Dashed arcs model precedence relations between
two events (e.g., event T31 happens after event T24).

The LP formulation of the event network is shown in the following page; where constraint
(5) and (6) describe a sequencing relation between two events, and the objective (4) is to
minimize the completion time of the last event. Solving the model yields an optimal value
of 110 seconds for the critical path [T0, T21..T24, T31, T32, T13, T14, T41..TScore].
The path is a sequence of inter-dependent events, which collectively consumes the longest
execution time. This does not necessarily cover all events. Actions falling on other paths
need to be started simultaneously in order to finish the project in the 110 seconds, yet
some of them could be delayed without effecting the project (i.e., events with slack).

This example does not account for the limit resource required to perform the activities,
such as robots and MPSs. In fact, it assumes that all activities which do not depend on
each other, are started simultaneously (by T0). It gives an estimate of the production
time in a world where resource are unlimited and instantly available. Although imprac-
tical, similar estimates could be used in the RCLL to give an initial intuition and a lower
bound on the duration needed for producing different orders. A CPA sequences activi-
ties by only considering their temporal interdependence, allowing different simultaneous
streams of execution. In practical situation, activities can rarely be processed simulta-
neously as their execution often competes for limited resources. The LP formulation of

16

the CPA follows.

Sets
E = {0, .., n} Ground set of events (start of outgoing activity edges)

Parameters
αi,j Duration of activity on edge ij, where i, j ∈ E
γi,j ∈ {0, 1} If event i precedes event j (i, j ∈ E)

Decision variables
Ti Continuous variables representing time of event (i ∈ E)

(the start time for all outgoing activity edges)
TScore Maximum time taken to finish all activities

Objective: Minimize TScore (2.9)
Constraints:

γi,j(−Ti + Tj) ≥ αi,j ∀i, j ∈ E (2.10)
Ti ≥ TScore ∀i ∈ E (2.11)

An important extension to CPA is that of sequencing the activities considering the
availability of their allocated resources. This extension gives rise to the combinatorial
problem of Resource Scheduling. Unfortunately, the combinatorial nature of scheduling,
requires a great number of discrete decisions. Combinatorial optimization problems
could only be realized by a MIP model.

2.2.3 MIP solving

Simplex Algorithm Simplex is a universal algorithm that was been developed by (Dantzig
[5]) for solving LP. Based on the observation that the objective function will intersect
one of the facets of the polygon of the feasible region. The algorithms starts at look-
ing for vertices solutions by evaluating the objective at extreme point of the polygon,
then searches through the edges that improve the objective value. For a comprehensive
description of the algorithm we refer to [2]

LP Relaxation An LP relaxation of a MIP model, is the LP model obtained by relaxing
the integrality restriction of the corresponding MIP model. It is used to give a lower
bound estimates on the solution of a MIP model.

Branch And Bound The algorithmic framework was first proposed by Land and Doig
[15] as a method to solve disceret programming problems. It remains the most effective
paradigm for solving combinatorial optimization problems. The method is based on

17

enumerating the set of feasible solutions of a MIP model, to find the minimum (or
maximum) value, by performing state space search on a binary search tree of feasible
solutions, employing smart heuristics and pruning techniques. The root, containing the
set of all feasible solutions, is recursively expanded into branches of disjoint solution
subsets. Bounds on the branches are calculated by relaxing the problem (e.g., by solving
its LP relaxation); and fathomed if either the branch is bounded by the value of the
best yet found solution (i.e., the bound), or proved infeasible. The branching continues
till all branches are fathomed. The optimal solution is the best found integer solution
bound.

Gurobi Solver This section presents common MIP solution strategies and introduces
Gurobi, the solver used by our scheduling model.

Figure 2.3: Gurobi API [9]

Gurobi [9] optimizer is a high performance commercial solver for mathematical program-
ming. Its capability to exploit parallelism and employ algorithms speedups, put it at
the top the standard benchmarks [21] [22]. It provides well-maintained object-oriented
interfaces (C++, Java, Python) and comprehensive documentation to technical features.

Gurobi employs several types of cutting plans, pre-solve reduction methods and other
advanced algorithms and heuristics to find optimal and near optimal feasible solutions. It
supports speedup features such as starting from a feasible solution to guide the search for
an optimal solution, which could greatly help reducing solving time. It provides native
support for advanced modeling features like Special-Ordered Set constraints, MIN/MAX,
ABS, AND/OR and indicator constraints.

18

2.3 Resource Scheduling

Generally, scheduling refers to the problem of allocating and sequencing the access to a
set of resources shared by a set of activities. Instances of the scheduling problem arias in
the real world as a need to efficiently utilize limited resource over a time period. In OR,
Machine Scheduling is the problem of sequencing operations achieving a set of parts (i.e.,
jobs) processed by a set of machines. The objective is to find a sequencing of operations
on each machine, in order to improve an efficiency matrix.

Different sub-problems of scheduling arise depending on the machine environment, jobs
characteristics, the nature of precedence relations that exist between operations and the
optimization criterion in question. Scheduling classes are studied separately in OR liter-
ature to determine their complexity and devise solution strategies. Scheduling literature
could be divided into four general classes. The two restrictions shared by most literature,
is that a machine is able to process only one operation at a time and that a job can only
be processed by a single machine at any given moment.

Single machine scheduling It is a pure sequencing problem where n uni-operational
jobs (i.e., consisting of a single operation) are processed by a single available machine. It
is the simplest scheduling problem possible, where there are only n! possible schedules,
determined solely by a job ordering. Generally, a schedule that is solely determined by
a common general ordering of jobs, is called a permutation schedule.

Parallel machine scheduling A set of uni-operational jobs are processed by a set
of identical, uniform or unrelated machines. This gives rise to the machine allocation
sub-problem of scheduling (it requires determining which machines will process which
operation). A schedule will involve solving both the machine allocation and sequencing
sub-problems simultaneously.

Series machines scheduling (Flow-Shop) This class occurs when machines are ar-
ranged in a series forming a fixed pipeline. The problem is of sequencing n jobs for
processing by the machine pipeline. Since all jobs are processed by the same machine
sequence and an operation can only be processed by a specific machine, the precedence
relation between operations of a job is identical for all jobs (starting by the operation
on the entry machine and ending by the operation on the exit machine). In the version
of the problem, that jobs are not allowed to overtake each other in the pipeline, the
problem yields a permutation schedule.

Hybrid machine scheduling (Job-Shop) N jobs are processed by m machines. Op-
erations of a job are processed in a known order (specific to each job) on specific ma-
chines. Precedence relations between operations and processing durations are explicitly
specified.

This general classification abstracts many of the complexities of scheduling found in prac-
tical environments. For a more comprehensive classification we refer to the classification
of Graham et al. [8], commonly adopted in scheduling literature.

19

C1 Zero release date: all jobs are available for processing at time zero

C2 Sequence independent: processing times includes the machine setup time, indepen-
dent of the sequence of processing

C3 Deterministic: job and duration information are certain and known in advance

C4 No breaking: machines are continuously available

C5 No preemption operations can not be interrupted once started

C6 Uni-operational machines: machines process at most a single operation at a time

C7 Single active job’s operation: a job can be processed by at most one machine at a
time

C8 Linear precedence: relations between operations are arranged in form of single
precedence chain

C9 Explicit machine per operation: operation can be performed on a specific machine
known in advance

C10 No Job selection: all jobs need to be executed to completion by the schedule

Further sub-classes arise when relaxing the restrictive assumptions to a scheduling in-
stance. The α|β|γ notation of Graham et al. [8] is adopted to help us understand the
scheduling problem at hand and its complexity. Graham’s survey gives an insight about
the complexities of the classes and the reducibility among scheduling problems.

Let ◦ denote the empty symbol, a scheduling problem is described by the three field
notation α|β|γ.

Machine environment α = α1 α2; α1 ∈ {◦, P,Q,R, F, J,O}; α2 ∈ Z+ ∪ ◦
α1 describes the basic classes indicated earlier. ◦ single machine, P identical
parallel machines, Q uniform parallel machines (where the processing time is a
factor of the machine speed), R unrelated parallel machines, O open shop (same
as job shop except the order in which operations are executed is immaterial), F
flow-shop, J job-shop.

α2 a positive integer specifies the number of machines as a parameter of the prob-
lem instance. ◦ means machine number is a variable.

Job characteristics β ⊂ {β1, ..., β6}

β when empty, implies that scheduling instance is in its most basic form. i.e., all
of the restrictive assumptions hold.

β1 ∈ {pmtn, ◦}; pmtn means that a job could be interrupted (preemption)

β2 ∈ {res, res1, ◦}; res

20

β3 ∈ {prec, tree, ◦}; prec means linear precedence between jobs could exist, tree
precedence exists between jobs

β4 ∈ {rj , ◦}; rj means Release dates for jobs are specified. If β4 = ◦, the release
date is zero for all jobs

β5 ∈ {mj ≤ m̄, ◦}; specifies a constant upper bound on the number of operations
in a job is allowed to have (only job-shop)

β6 ∈ {1, p ≤ pj ≤ p̄, ◦}; respectively, specifics constant unit processing time or an
upper and lower bound on the processing times

Optimality criteria γ ∈ {fmax,
∑
fi}

The only optimization criterion we are interested in here, is minimizing the makespan
indicated as Cmax the completion time of all the jobs. For an overview on the other
existing criterion and notation, refer to Graham et al. [8].

The RCLL production scheduling is identified as an extended version of a Job-Shop
environment (JSP). In the classical JSP, a part (i.e., job) is produced by a fixed chain-
sequence of operations, performed on specified machines. In the RCLL, parts are achiev-
able by alternative operation sequences, on alternative machines, by alternative identi-
cal robots. Moreover, operations have in-tree precedence relations (possibly with other
parts), and robots have uncertain travel times.

2.4 Planning

In the most abstract sense, Planning is the process of deliberating and admitting a
sequence of activities, that takes us form a starting state, to a desirable state. In
operational research, Resource Planning is concerned with scheduling the usage of scares
resources between activities to meat a defined efficiency matrix.

In Artificial Intelligence, Ghallab et al. [7] defines Automated Plan Synthesis as ”Com-
putationally automating the deliberation process of choosing and organizing actions, by
anticipating their expected outcomes, to best achieve some objective”. Traditionally, the
difficulty of the planning problem depends on the aspects we choose to model or simplify.
Its best seen in the light of the following 8 restrictive assumption.

A0 Finite: The system has finitely many states, actions, events.

A1 Fully Observable: Complete knowledge over the state is attainable.

A2 Deterministic: Application of an action brings a deterministic system to single
state.

21

A3 Static: State only changes when an action is applied by the controller. (i.e., no
exogenous events)

A4 Restricts Goals: The planner handles only restricted goals that are represented
as an explicit goal state or a set of goal states. Extended goals like ones seek to
optimize a utility are not handled under this restriction.

A5 Sequential Plans: A solution plan is a linearly ordered sequence of actions.

A6 Implicit Time: Actions are instantaneous state transitions with no duration.

A7 Offline Planning: Planner is unaware of any changes that come up after it starts
planning. It plans form an initial state to a goal state regardless what comes up.

In this thesis we consider strategies to deal with relaxing assumptions A3, A4, A5,
A6,A7

2.4.1 Classical and Non-Classical Planning

Classical planning is planning under the restrictive model (i.e., an environment where all
the restrictive assumption 0 to 7 are met). In this context, planning is reduced to finding
a successful sequence of actions, that transforms the state of the world from an initial
state, to a goal state. That sequence of actions is called a Sequential Plan. A world
model is represented by a set of true propositions under the closed world assumption
(meaning that only proposition that hold are considered true). Actions are state transi-
tion operators. An action is only applicable if a set of propositions, called preconditions,
holds in the world model. Applying an action changes the state of the world by adding
and/or deleting a set propositions, those are called effects of an action. The complexity
of classical planning is in essence the complexity of the search algorithm used to find a
plan. Since the tree of possible states could get astronomically large, a fair amount of
research has been dedicated in finding smart methods and heuristic in order to generate
a plan in a reasonable time.

2.4.2 Domain Definition Language (PDDL)

PDDL was introduced by McDermott [19] as an effort to create a unified standardized
language for representation and exchange of planning domain models. It models STRIPS
fashion actions, as instantaneous state transitions from a state where some preconditions
are satisfied, into another where the post-conditions are applied. The syntax is Lisp-like
parenthesized. It creates separate models for describing the behavioral capabilities of the
system (possible actions) than for describing the characteristics of the system (like initial
state and goals). This corresponds to a domain model and a problem model separated
in different files. One of the limitations of PDDL is that is can only model predicates
symbolically.

22

PDDL2.1 Due the limited expressiveness of PDDL restricting it to model classical
planning problems, Fox and Long [6] proposed an extension to the language. The exten-
sion allows the representation numeric fluents, durative actions, conditional effects and
plan metric.

2.5 Goal Reasoning Model

Agents following a goal reasoning model are able to deliberate on and self-select their
objective (Aha [1]). They are able to reason about which goals to pursue in different situ-
ations, rather than only achieving fixed objectives. In this section we present the CLIPS
Executive (CX) integrated goal reasoning system [25] , where the proposed approach is
to be implemented.

2.5.1 CLIPS Executive

The CLIPS Executive (CX) [25] is an integrated goal reasoning and executive system,
implemented using the CLIPS rule-based production system [31], as an effort to bridge
the gap between plan synthesis and plan execution by interleaving them into a single
program flow. The program flow uses an explicit representation of goals (Aha [1]) ad-
hering to a specific goal life cycle (Roberts et al. [28]). The system achieves robustness
in execution by allowing continues monitoring and reasoning about the states of goals
and actions, allowing it to influence the flow of execution.

Goal A goal is the core data structure modeling a constraint or an objective that an
agent is interested in achieving or maintaining. In CX, a goal type describes whether the
goal is intended for achieving or maintaining a certain condition. Goals arise either as a
result of situational reasoning about the environment, as a result of execution of another
goal or by an external influence (e.g., commanded by an authorized master agent). A
goal is a grounded instance of a goal class, defining a category of goals.

Goal Life Cycle Extending on the ideas of Roberts et al. [28], Figure 2.4 show the goal
lifecycle implemented in CX, defining the program flow based on the states of goals.
The progress of a goal in the lifecycle is indicated by a goal mode. Upon reasoning,
goals are first created in a formulated state. Some of the formulated goals will be then
selected for execution, according to a user defined strategy (encoded by its relation to
other goals). Selected goals are expanded into plans forming a simple goal, or further
sub-goals forming a compound goal. The goal reasoner selects and commits to a plan
achieving the goal, and acquires all the ”goal resources” needed for its execution. Then,
a goal is dispatched for execution by different executives. When the execution of a goal
is finished, the goal outcome indicates whether it had succeeded or failed. Finally, a goal

23

gets evaluated to asses the implication of the outcome (e.g., adapting the worldmodel or
creating new goals conditionally).

FORMULATED

SELECTED

EXPANDED

COMMITTED

DISPATCHED

FINISHED

EVALUATED

RETRACTED

Goal Reasoner

Choose among goals

Expander generates plan

Commit to a plan or sub-goal

Acquire goal resources

Action selection and execution

Evaluation of goal outcome

CX/System

R
e
je
c
ti
o
n

R
e
-i
n
it
ia
te

m
o
n
it
o
ri
n
g
(m

a
in
te
n
a
n
c
e
g
o
a
l
o
n
ly
)

Figure 2.4: Goal lifecycle in CX [25]

Goal Interdependence (Goal Trees and Priorities)
In CX, well-defined interdependence relations be-
tween goal classes, are used to guide hierarchical
or parallel execution of goals. The arrangement of
goals in a tree allows to model the different modes
of execution as relations between goal classes. Goal
priorities, guide the goal selection when several
goals, with a common parent, are eligible for selec-
tion (i.e., the highest priority goal will be selected
first). A compound goal sub-type defines the rela-
tion between goals belonging to a common parent
and the semantics of their interaction with their
parent (i.e., what the state of executing the sub-
goals imply to the state of the parent-goal). A run-
all sub-type, executes all the sub-goals in parallel,
succeeding when all sub-goals succeed (failing if one
sub-goal fails). A try-all sub-type, executes all sub-
goals in sequence, until at one succeeds (failing if
all sub-goals fails). A run-one sub-type commits to
an executable goal (with the highest priority), the
outcome of executing the sub-goal directly determines the outcome of the parent. Other
compound sub-types exist to control the execution of a single sub-goal. A retry sub-type
re-tries a sub-goal a number of times. A timeout sub-type executes the sub-goal with a
time bound.

The most primitive goal type is a simple goal which has no sub-goals, but rather a one
or more plans achieving the objective. Simple goals only exist at the leaves of the goal
tree. A leaf goal is successful when all plan actions have been executed successfully. A
leaf goal fails when an action fails, a temporal constraint is broken or upon intervention
by the execution monitoring (e.g., to abort a dispatched goal).

2.6 Incremenetal Goal Reasoning

The goal reasoning model of the current CX agent formulates all RCLL production
goals, allowed next by the environment. Each agent selects the best goal it can achieve
next, guided by a static goal prioritization. The current approach achieves robustness
through the execution of fine-grained goals with short plan lengths, which facilitates
recovery from execution failures using a smart execution monitoring strategy. It trades
the overhead of scheduling, for fast reaction time and the uncertainty of executing long

24

partial plans (with logical dependencies), for incremental reasoning about the current
situation.

The incremental reasoning approach achieves cooperation implicitly, by sharing parts
of the agents world model and controlling access to the resources used by their goals
with a mutex mechanism. It lacks the deliberation of common high-level goals or an
agenda, which utilizes the work done by the agents towards a specific objective. The
absence of a common objective makes it hard to decide on the importance of a certain
task in varying contexts, resulting in a sub-optimal goal selection strategy. Moreover,
the absence of reasoning about expected goal-duration, goal-effect, future goals and
availability of resource, results in sub-optimal allocation of tasks to agents and resources,
inevitably delaying production. Even worse, low score gaining or even unnecessary
work can be overtaken wastefully, while high score gaining opportunities are soon to be
executable.

In fact, in order to determine ”if” and ”when” a certain goal should be executed we need
to recursively answer questions about its relation to a high-level objective, the causal
relation it has with other goals (precedence relations with past and future tasks), when
would the goal be executable, how long would it take, which resources are most suitable
to achieve it (based on expected availability and locations), which robot is most suitable
to execute it (biased on expected availability and travel times between locations).

25

3 Related Work

First, we review some of the earlier approaches attempted to improve the production
in RCLL domain. Then, we review related work relevant to logistics and scheduling in
general.

Centralized Task Planner Löbach [17] developed a Centralized Task Planner With
Temporal Aspects to employ the ”opportunistic concurrency” arising during single or-
der production in the RCLL domain. Löbach identified the RCLL production as a simple
temporal problem [4]. They developed a system with architecture similar to CRIKEY
[10] , splitting the temporal planning problem into its different start two constituting
sub-problems (plan synthesis and scheduling [7]) and solved each separately. Löbach ex-
tended the rule-based agent used by the Carologistics team [24] to incorporate temporal
aspects by rearranging actions of a sequential plan (synthesized for a single RCLL order)
into a Simple Temporal Network (STN). The rearrangement formed a partially ordered
plan modeling causal and temporal relations between actions. This allowed for several
concurrent execution streams selected greedily by robots.

They presented a PDDL domain and problem models for the RCLL domain ensuring
a short planning time. The PDDL problem model is generated online for an order, by
dynamically aggregating the world model information. A Fast-Forward planner is then
used to find a totally ordered plan for a single actor. Subsequently, an STN generator
breaks down the sequential plan (with the aid of an extended PDDL model) into a
partially ordered plan representing possible execution streams and preserving temporal
and causal relations between actions. The generated STN encodes what actions may be
executed concurrently by several actors and the temporal dependency between actions.
The STN graph is then used to guide the decision of a greedy agent that picks the most
suitable open task from the STN network (i.e., The parentless with the longest execution
path).

The system achieves a sub-optimal concurrent behavior, enabling cooperation between
robots in producing a single order. The system had the limitation that conflicts in
resources allocation between tasks happened, causing a deadlock when executing with
multiple agents. Further more, the only concurrency employed is the one found in
production tasks of a single order selected by a fixed selection strategy.

26

OMT Leofante et al. [16] presented an integrated system that uses CX for online execu-
tion and monitoring of optimal by construction plans. They encoded the RCLL planning
and scheduling problem as a boolean combination of linear constraints over the reals, and
employed an OMT (Optimization Modulo Theories) solver to synthesis a high level plan
with optimality guarantees. They incorporated domain specific knowledge to gain speed
up in solving by explicitly encoding partial orders on actions that have temporal/causal
relation in a production pipeline of an single RCLL order. Their approach improved the
delivery times of the incremental reasoning agent of the Carologistics team, yet the total
robustness of the system was decreased.

Flow Shop Scheduling Perhaps the closest work done to our approach, is that of team
Leuphana investigated by Voß et al. [30]. Their approach focused on finding an optimal
schedule for a small RCLL instance. They classified the RCLL as flexible flow shop
environment and argue that due to the relatively small size of the scheduling problem
an optimal approach is promising. They presented a MILP model based on the job shop
model of Pan and Chen [27] adjusting it to the requirement of application. To simplify
the molding they proposed considering the robots as identical parallel machines and the
transportation times as processing time. They then modeled a single robot as a central
hub in a blocking flowshop with reentrant processes. FF7|prec, rj , di, blocking|

∑
Tj +Ej

according to Graham et al. [8], notation. An instance with four C0 jobs and a single
robot was solved to optimality in under a minute.

They concluded that the feasibility of scheduling for more complex orders, multiple
robots and different optimization criterion still needs to be investigated. They remarked
if a model turns to be too complex to solve in real time, an abort criteria has to be defined
and other fall back procedures need to be implemented. Their simplified model for single
robot does not consider the optimal allocation aspect of robots to tasks. Operations of a
job can only be performed by a single robot in a strict sequence. In fact, we argue that
formulating the RCLL domain as a Flexible Flow Shop is bound to waist concurrency
opportunities that could be employed by robots cooperating to produce a single order.

MIPS Scheduling Lütjens et al. [18] developed a MIPS model that solves the Order
Batching, Job Shop scheduling and Picker Routing problems in unison for a fleet of
picker robots operating in a storage ware house. Their model extends the Capacitance
Vehicle Routing Problem with Pick and Delivery by constraints for shared space. Their
model has 31 constraints and can solve small sized instances in reasonable time. They
developed a three phased heuristic to solve real sized problems. Results showed that
their model finds a makespan that is approximately 82% of the greedy task allocation
system used by Magazino 1.

1https://www.magazino.eu

27

4 Approach

A centralized goal reasoning and scheduling approach was developed to solve and execute
the RCLL production problem; a scheduling model integrated within a goal reasoning
model. Initially, an expanded goal-tree (encoding the production tasks) serves as the
primary source for formulating events of the scheduling model. A MIP solver, integrated
into the scheduleing model, solves the scheduling problem. Eventually, the centralized
reasoner supervises the execution of the scheduled goal-tree.

The centralized goal reasoner splits the production tasks into sub-goals performable by an
idle robot (i.e., a pick then a put sequences intercepted by machine instructions, starting
and ending with a free gripper). A goal-tree encodes the precedence of production tasks
by the child-parent relations between the sub-goals.

The scheduler processes an expanded goal-tree (the primary input) and resource-meta
information (a secondary input), into an event-based representation. The scheduling
model maintains the event-based representation, and uses it to communicate with an MIP
solver. The event-based representation encodes the scheduling problem as a network
of events-nodes, with multiple layers of resource flow. The MIP optimization model
is dynamically generated for the network. The optimization model is solved with an
objective of minimizing the total make-span of events. The scheduling model is post-
processed, amending execution-information to the goal-tree. A scheduled goal-tree is the
result of scheduling an expanded goal-tree.

The Job shop scheduling with a plan selection and sequence dependent setup times is a
very hard problem to solve optimally. Yet, for small instances of the problem, optimality
can be attained. This work presents a generic MIP formulation which solves a Flexible
Job Shop Scheduling Problem with Process Plan Flexibility (FFJP-PPF) formulated as
an event network with multiple commodity flow layers, by simultaneously finding a flow
for all resources through the underlying events network, which minimizes the make-span
of events. The multilayer network is deduced by parsing a goal-tree and resource-meta
information.

We first give an overview of our approach and the structure of the rest the thesis, while
introducing a running example and helpful notations used for the rest of this thesis.

28

BS?side RS1

?MPS

ĈS1

ĈS1+

CS1

CS1+ DS

Figure 4.1: C1 order production chains. Edges convey the flow of resources through the
production. Curved edges are by-products of operations. Solid edges depict a transportation of

a workpiece by a robot, to be processed by the following MPS (square nodes). Dashed edges
depict state transformation of a MPS resource.

4.1 Overview

To produce an RCLL order, identical mobile robots has to transport a workpiece between
MPS locations. Each MPS is capable of performing a range of production operations.
Even though a production workpiece undergoes a strict chain of operations, an MPS
might need preparation before performing an operation. Preparing an MPS requires one
or more distinct chains of operations.

Figure 4.1 depict the resource flow and the precedence of operations for an RCLL C1
order. The C1 production serves as a running example throughout the reminder of this
thesis. An MPS has a fixed location, yet it can be in one of different states. For example,
a buffered cap-station (ĈS1) mounts a cap on the production workpiece, only after an
empty cap-station (CS1) has retrieved a cap (ĈS1+), then cleared of the by-product
workpiece (a.k.a., cap-carrier). The precedence of production operations forms an in-tree
precedence relations (i.e., each vertex has at most one successor).

Furthermore, several resources might be capable of performing the same operation (e.g.,
several MPSs could be chosen to produce the material used to fill a ring station; several
identical robots can perform a transportation operation). A resource might require a
setup period between two operations, dependant on the sequence of operations. Our
motive is to minimize the production time, by determining, when would, each resource
(i.e., MPS or robot) perform which operation.

Our scheduler attempts to minimize the total production duration that is needed
to execute a goal-tree. It encodes the goal-tree as a MIP optimization problem, upon
which solving yields a goal-execution schedule and resource allocation schedules (i.e., a
schedule for each resource). Our centralized goal reasoning and scheduling approach has
the following main stages:

29

1. Initially, resources are declared (PDDL resource objects; resource meta-information).

2. The reasoner formulates a goal-tree, modelling the production tasks

3. The reasoner expands each sub-goal, using a plan library. A plan is formulated for
each available resource allocation

4. The scheduler pre-processes the plans to deduce resource usage-requirments

5. The scheduler constructs the event-based representation, encoding the scheduling
problem as a network of events, with multiple layers of resource flow

6. The MIP solver is called to generate and solve the optimization problem

7. The scheduler post-processes the solution and amends the goal-tree with execution-
information

8. The reasoner executes the scheduled goal-tree; sub-goals are dispatched according
to an execution and resource allocation schedules

9. The reasoner dispatches and monitors individual actions, to be remotely executed
by (an allocated) distributed agent

This section describes the main contribution of this thesis.

Section 4.2 describes the declaration of resources and their resource meta-information.
Section 4.3 describes the formulation and expansion of a goal-tree (the input of the sched-
uler), and the execution of a scheduled goal-tree (the output of the scheduler). Section 4.4
explains how the scheduler parses the goal-tree into an event-based representation, and
formulates a corresponding MIP model. Section 4.5 covers the implementation aspects
and extensions to the goal reasoning model and its goal life-cycle; implementation aspect
of the scheduling model and its interaction with the reasoner and the solver, during its
schedule life-cycle. Finally, execution of the goal-tree by distributed agents is described
in more depth.

4.2 Resource Declaration

A PDDL super-type resource is dedicated to describe resource objects. A resource ob-
ject can only be used by a single running plan at any given time. In the RCLL domain,
PDDL types robot, mps and workpiece, belong to the resource super-type. Listing 4.1
shows the resources declared in PDDL for the RCLL domain. An instance of a resource
(e.g., a cap-station or Robot-1) is used exclusively by (at most) a single running plan
(e.g., MOUNT-CAP, FILL-CAP) at any given time.

30

1 (:types
2 resource - object
3 robot - resource
4 mps - resource
5 workpiece - resource)

Listing 4.1: Resource objects deceleration in the RCLL PDDL domain . A resource is an
object which should only be used by a single running

1 (resource-info (type robot)
2 (consumable FALSE)
3 (producible FALSE)
4 (setup-preds (create$ at))
5 (state-preds (create$ can-hold is-holding)))

Listing 4.2: Resource-meta information of a robot PDDL object, declared in CLIPS.
setup-preds and state-preds specify the PDDL predicates names used to describe a

resource-state and resource-setup. The consumable and producible fields specify whether the
resource is available by the environment, or whether it is consumed (or produced) as a result of

executing an action.

At plan start, a resource is used (i.e., consumed) at an expected state and setup; at
plan end, a resource is released at known state and setup.

Resource state is a set of PDDL predicates which are used to describe and distinguish
different possible states of a resource instance (such as, the gripping status of a robot; the
colors mounted on a workpiece; the buffering status of a cap-station). A plan consumes
and (or) produces a resource at specific a state.

Resource setup is a set of PDDL predicates which are used to describe a property of a
resource instance, which is trivial to change (such as, a robot location). A plan consumes
and (or) produces a resource at specific a setup.

Some resources are produced or consumed as a result of executing a plan action (such as
dispensing or delivering a workpiece), while others are available as a commodity provided
by the environment (such as, robots and MPSs). The information specifying whether
or not a resource type is producible (or consumable) by plan actions, as well as, which
PDDL predicates are used to describe states and setups of a resource, are specified as
resource-meta information. For example, resource-meta info. for a robot is specified in
Listing 4.2

31

4.3 The Goal Reasoner

Our scheduling model is integrated within a centralized goal reasoning model. An ex-
panded goal-tree (encoding the scheduling problem) serves as the primary source of
information for generating the scheduling model. After scheduling, the centralized rea-
soner supervises the execution of the scheduled goal-tree.

Initially, a goal-tree is formulated, encoding the production tasks and their logical prece-
dence. A sub-goal is expanded using a plan library, by formulating a plan for each possi-
ble resource allocation. An expanded goal-tree (encoding a scheduling problem) serves as
the primary source of information for the scheduler. The scheduler formulates and uses a
scheduling model to solve the scheduling problem. Finally, the goal-tree is amended with
execution information, to become a scheduled goal-tree (i.e., plan selections, sub-goal
start-times, and setup sub-goals formulation).

Eventually, the scheduled goal-tree is executed in compliance with sub-goal start-times
and resource allocation-schedules (i.e., an allocation-schedule for each resource). A sub-
goal is achieved by executing a selected plan which is started at a specific time. Any
unexpected temporal violations during execution are remedied by complying with the
resource allocation-schedules. This protects the execution from any potential logical
threats, which result from violating the temporal schedule.

4.3.1 The Expanded Goal-Tree

O1DELIVERMOUNT-CAP

CLEAR-CAP

RETRIEVE-CAP

MOUNT-RING

FILL-RS
CS1+ DSRS1 ĈS1

CS1+

BSside? RS1

MPS? RS1

ĈS1+

ĈS1

CS1

ĈS1+

Figure 4.2: A centralized goal-tree formulated for a C1 order. It breaks down the C1
production chain into sub-goals which require an allocated agent (free to grip). A sub-goals

models a pick, move, put sequence, intercepted by communicating with the machine.

Initially, a goal-tree is formulated encoding the production tasks. Tasks are broken down
into sub-goals that require the allocation of an idle robot with a free gripper. A sub-goal
consists of a pick, put sequence, intercepted by sending machine instructions. Figure
4.2, shows a goal-tree modeling the C1 order of Figure 4.1. It can be seen that a sub-
goal roughly corresponds to a group of production operations in Figure 4.1. A goal-tree

32

encodes the precedence of the production tasks by the child-parent relations between
the sub-goals.

O1

DELIVER

Plan1 (40s)
(CS1, DS,WP,Bot1)

CS1+⇒ CS1
DS ⇒ DS
ŵp⇒

Bot1 ⇒ Bot1

MOUNT-CAP

Plan1 (40s)
(CS1,WP,Bot1)

ĈS1 ⇒ CS1+
wp⇒ ŵp

Bot1⇒ Bot1

CLEAR-CS
Plan1 (40s)

(CS1, CC,Bot1)

ĈS1+⇒ ĈS1
cc ⇒

Bot1⇒ Bot1

RETRIEVE-CAP

Plan1 (20s)
(CS1, cc, Bot1)

CS1⇒ ĈS1+
ĉc ⇒ cc

Bot1⇒ Bot1

MOUNT-RING

Plan2 (20s)
(BSin, RS1, wp,Bot1)

BSin ⇒ BSin

RS1⇒ RS1
wp⇒ wp

Bot1⇒ Bot1
Plan1 (30s)

(BSout, RS1, wp,Bot1)
BSout ⇒ BSout

RS1⇒ RS1
wp⇒ wp

Bot1⇒ Bot1

FILL-RS

Plan3 (20s)
(CS2, RS1, cc, Bot1)

CS2⇒ CS2
RS1⇒ RS1

cc ⇒
Bot1⇒ Bot1

Plan2 (30s)
(CS1, RS1, cc, Bot1)

CS1 ⇒ CS1
RS1 ⇒ RS1

cc ⇒
Bot1 ⇒ Bot1

Plan1 (40s)
(BSout, RS1, cc, Bot1)

BSout ⇒ BSout

RS1⇒ RS1
cc ⇒

Bot1⇒ Bot1

Figure 4.3: Expanded Goal-tree for C1 order. A grounded plan is generated for each possible
resource allocation.

A sub-goal is expanded using a plan library, by formulating a plan for each available
resource allocation. Figure 4.3 shows an expanded goal-tree which is generated for a
single available robot. For example, a FILL-RS goal has a plan formulated for each
possible allocation of a robot and each possible picking MPS-location (i.e., base-station,
cap-station-1 shelf and cap-station-2 shelf). Plans of a goal have varying durations as a
result of using alternative resource sets or action sequences. A plan consumes a resource
at a known starting state; exclusively uses the resource for the plan duration, then
releases it an an end state. The resource allocation decision is elevated to become a plan
selection decision (i.e., the selection of a plan determines the resources allocated to a
goal).

4.3.2 The Scheduled Goal-Tree

A scheduled goal-tree is the result of scheduling an expanded goal-tree. After the scheduler
determines execution and allocation schedules (i.e., an execution schedule for sub-goals,
and an allocation schedule for each resource), the expanded goal-tree is prepared for
execution, by amending the sub-goals with the scheduled execution-information. For
each sub-goal:

• A plan is selected

• Execution times are set

33

• Sub-goals are formulated, if a resource setup is needed

O1

DELIVER
start-time: 0210

Plan1 (40s)
(CS1, DS,WP,Bot1)

CS1+⇒ CS1
DS ⇒ DS
ŵp⇒

Bot1⇒ Bot1

Setup Bot
start-time: 0200

SetupPlan (10s)
(Bot1)

Bot1⇒ Bot1

MOUNT-CAP
start-time: 0160

Plan1 (40s)
(CS1,WP,Bot1)

ĈS1 ⇒ CS1+
wp⇒ ŵp

Bot1⇒ Bot1

Setup Bot
start-time: 0145

SetupPlan (15s)
(Bot1)

Bot1⇒ Bot1

CLEAR-CS
start-time: 0140

Plan1 (5s)
(CS1, CC,Bot1)

ĈS1+⇒ ĈS1
cc ⇒

Bot1⇒ Bot1

Setup Bot
start-time: 0130

SetupPlan (10s)
(Bot1)

Bot1 ⇒ Bot1

RETRIEVE-CAP
start-time: 0110

Plan1 (20s)
(CS1, cc, Bot1)

CS1 ⇒ ĈS1+
ĉc ⇒ cc

Bot1⇒ Bot1

Setup Bot
start-time: 00100

SetupPlan (10s)
(Bot1)

Bot1⇒ Bot1

MOUNT-RING
start-time: 0060

Plan2 (40s)
(BSin, RS1, wp,Bot1)

BSin ⇒ BSin

RS1 ⇒ RS1
wp⇒ wp

Bot1 ⇒ Bot1

Setup Bot
start-time: 0030

SetupPlan (30s)
(Bot1)

Bot1⇒ Bot1

FILL-RS
start-time: 0010

Plan3 (20s)
(CS2, RS1, cc, Bot1)

CS2⇒ CS2
RS1⇒ RS1

cc ⇒
Bot1⇒ Bot1

Setup Bot
start-time: 0000

SetupPlan (10s)
(Bot1)

Bot1⇒ Bot1

Figure 4.4: A scheduled goal-tree; the result of scheduling an expanded goal-tree. The tree is
amended with execution-information and is ready for execution. A plan has been selected

(highlighted), setup-goals were formulated (brownish sub-goals), and a start-time was set for
each sub-goal.

Figure 4.4 shows the result of amending the execution-information to the expanded goal-
tree in Figure 4.3 (the C1 running-example). Setup goals for robots are created as
sub-goals, to prepare the robot for the upcoming goal. The is scheduled goal-tree is
ready for execution.

4.3.3 Execution

A goal is achieved by executing a selected plan. The plan is started when:

• The goal’s start-time is reached

• Its sub-goals are completed

• For each of the resources required by the goal, the goal is the next scheduled
allocation appearing in the resource allocation-schedule.

The central reasoner dispatches individual actions for remote execution by their (allo-
cated) distributed agents. The central reasoner monitors the execution for any temporal
or logical violations (i.e., schedule or plan violations) resulting from execution uncer-
tainty. If a temporal violation occurred (e.g., a sub-goal took longer than expected), the

34

above execution scheme ensures that the execution will continue with a delay (without
breaking any logical precondition). Indeed, complying with the resource allocation-
schedules as well as the precedence of sub-goals during execution, protects the execution
from any potential logical threats, that results from executing actions earlier or later
than expected.

4.4 The Scheduler

The scheduling model consists of an event-based representation of the scheduling problem,
used to communicate with an MIP solver. The event-based representation is generated
by parsing an expanded goal-tree (the primary input) and resource-meta information
(the secondary input). The scheduler uses a MIP solver to solve the scheduling problem.
Eventually, the scheduler amends the goal-tree with execution-information. A scheduled
goal-tree is the result of scheduling an expanded goal-tree.

First, the goal-tree and the resource-meta information are pre-processed in order to
deduce resource-usage requirements. The resource-usage requirements specify the con-
sumption and production requirements of the resources, by each plan. The scheduler
then processes the goal-tree as well as the resource-usage requirements, to formulate an
event-based representation of the scheduling problem. The event-based representation
encodes a scheduling problem (in a scheduling model), analogical to how a goal encodes
a planning problem (in a goal reasoning model). The event-based representation encodes
the sub-goals and plans as events in a multilayer commodity flow-network.

Analogical to goal expansion into plans by calling a planner, the event-based represen-
tation is expanded into scheduled events by calling an MIP solver. An optimization
problem is generated based on the event-based representation. Simultaneously finding
the flow for all the resources between the events of the multi commodity flow temporal
network, which minimizes the total make-span of events, yields start-times for events and
an allocation schedule for each resource. Finally, the solution is post-processed by the
scheduler, to update the event-based representation and eventually amend the goal-tree
with execution information.

4.4.1 Pre-processing

The expanded goal-tree (primary scheduler-input) and the resource-meta information
(secondary scheduler-input) are pre-processed to deduce resource-usage requirements.
The resource-usage requirements specifies the consumption and production requirements
of each resource by each plan.

At a plan’s start, a resource is used at a specific resource-state and resource-setup (i.e.,a
consumption requirement). At a plan’s end, a resource is released at a specific state and
setup (i.e., a production requirement). The PDDL predicates which are used to describe

35

the resource-states (and setups), are specified as a resource-meta information, during
resource declaration. The resource-usage requirements (i.e., consumption and production
requirements) are deduced from plans preconditions and effects before formulating the
event-base representation.

Plan preconditions is the set of preconditions of plan-actions, which are not satisfied
by an effect of an earlier action in the plan.

Plan effects is the set of effects of plan-actions, which are not negated by an effect of
a later action in the plan.

Consumption requirement of a resource by a plan is the set of resource-state and
resource-setup propositions, appearing as a precondition of the plan.

Production requirement of a resource by a plan is the set of resource-state and resource-
setup propositions, appearing as an effect of the plan.

A plan consumes a resource at a known consumption requirement by exclusively using
the resource for the plan duration, then produces the resource at a known production
requirement. After being released by a plan, some resources need a setup duration
before being available for use by the following plan. The setup duration depends on the
sequence by which the resource is allocated to two consecutive plans. For example, a
robot allocated to a CLEAR-CAP goal followed by a MOUNT-RING goal needs a different
setup duration than if it was followed by MOUNT-CAP (i.e., traveling from the cap-station
output to the base-station, as opposed to traveling from one cap-station side to the
other). Resource setup duration between all possible plan sequences are calculated
apriori.

4.4.2 Event-based representation

The event-based representation encodes a scheduling problem (in a scheduling model),
analogical to how a goal encodes a planning problem (in a goal reasoning model); a
goal is expanded into plans (potentially) by calling a planner, similarly an event-based
representation is expanded into scheduled events by calling an MIP solver.

The scheduler parses an expanded goal-tree (the primary input) ,as well as, its resource-
usage requirements and setup-durations (the pre-processed information) in order to for-
mulate an event-based representation of the scheduling problem. The event-based rep-
resentation is a multilayer network of events. It consists of an event-precedence base
graph, and multiple layers of commodity flow (i.e., a layer for each resource)

36

Precedence graph is a directed acyclic graph, where goals and plans (of an expended
goal-tree) are parsed into event-nodes connected by directed edges of event-precedence
relations. Figure 4.5, shows a small part of the precedence graph which is generated
by parsing the expanded goal tree in Figure 4.3 (i.e., the expanded goal-tree of the C1
running-example). A precedence graph serves as the base-graph for a multilayer network;
each layer represents the commodity flow of a resource.

FILL-RS
start Plan2 (30s)

Plan1 (30s)

Plan3 (40s)

FILL-RS
end

MOUNT-RING
start

Plan1 (40s)

Plan3 (50s)

MOUNT-RING
end

Figure 4.5: Goal events and plan events in the precedence base-graph, parsed from the
goal-tree. A start and an end events are created for each sub-goal (solid nodes). Parent-child

relation between the sub-goal are depicted with the directed (solid) precedence edges. An event
is created for each plan (dashed elliptical nodes). Only a single event in a selection group

(depicted by the gray scopes) shall be included in the scheduled solution.

Commodity flow-network layer is a directed cyclic flow-network, where directed weighted
edges represent the flow of a resource between events of the base-graph (i.e., the prece-
dence graph). The resource-usage requirements are used to determine which events
should be connected by a flow edge. The setup durations are used to determine the
weights of the a flow edges.

Plan (Sec)
(Resource-Name)

Consumed Requirement Propositions Produced Requirement Propositions

Figure 4.6

Figure 4.6 shows how the usage requirements of a resource are attached to an event
node (e.g., a plan-event), in a commodity flow layer. The usage-requirement labels
(square boxes) serves as a proxy for connecting the resource flow edges to the event-node
(in a commodity flow layer). The green label (consumption requirement propositions)
proxies the in-flowing edges of a resource-type; the red label (production requirement
propositions) proxies the out-flowing edges.

Figure 4.7 shows the resource-usage requirements of a MOUNT-CAP plan (4.7a), parsed
into an event-node with multiple requirement labels (in the multilayer network). Each
pair of green and red labels of a resource-requirement (i.e., consumption and production
requirements) appears in a resource flow layer of the multilayer network.

After being consumed during an event, a resource is produced (by the event) in a known
state. The state of a resource (before and after an event) is encoded as a set of state

37

MOUNT-CAP::Plan (40s)
(CS1, wp, Bot1)

ĈS1 ⇒ CS1+
wp⇒ ŵp

Bot1⇒ Bot1

(a)

Event::MCPLAN (40s)
(CS1, wp, Bot1)

ĈS1

wp

Bot

ĈS1+

ŵp

Bot

(b)

Figure 4.7: A mount-cap plan 4.7a parsed into a base-graph event with requirement labels in
the multilayer network 4.7b. The state symbols (defining the requirements) are shorthand for

known resource-state propositions.

propositions attached to the flow-edges (i.e., an edge-state). Figure 4.8 shows flow edges
(with different edge-states) connected to an event-node. Only edges that satisfy the con-
sumption requirement of an event are allowed to flow into the event (i.e., the edge-state
propositions satisfies the resource consumption requirement propositions; analogical to
PDDL actions preconditions). The state of an out-flow edge (i.e., a resource produced
by the event) is the accumulative state of a corresponding in-flow edge, altered by the
production requirements of the event (i.e., analogical to applying effects of a PDDL ac-
tion; the state propositions of an out-flow edge are the propositions of an in-flow edge
after the resource consumption requirement has been applied).

Event (Sec)
(Resource-Name)

S1, S2 ¬S1, S3

SA
, S

1
, S

2

S
B , S

1 , S
2

S
B
, S

1
, S

2

S
B
, S

1 , S
2

S
A , S

2 , S
3

SB
, S

2
, S

3

Figure 4.8: The flow of a resource with different states propositions (i.e., edge state) into and
out of an event. The in-flow is connected to the event through the consumption proxy (green

label); inflowing edges satisfy the consumption-requirement propositions (S1 and S2). The
out-flow is connected to the event through the production proxy (red label); outflowing edges
satisfy the production-requirement propositions (¬S1 and S3). State propositions, which are
not changed by the event are preserved before and after the event, ensuring the continuity of

resource states (e.g., SB for the blue edges, and SA for the black edges). An inflowing edge and
an outflowing edge with the same color are selected in the solution.

The edges and nodes labeling scheme ensures the continuity of a resource state, before
and after an event (e.g., the black in-flow edge in Figure 4.8, only causes the black out-
flow edge, while the blue in-flow edges only causes the blue out-flow edge). Figure 4.9

38

shows an example of a cap-station resource, used by a FILL-RS plan; the plan fills a ring-
station with a cap-carrier, picked from the shelf cap-station. The plan-event does not
have any usage requirements for the cap-station (hence, the empty node labels), since
the plan uses the cap-station without changing its state. Nevertheless, a resource state
has to be preserved before and after being used by the event (resource state continuity).
The black and blue edges depicts the possible flows of the different resource-states of
a cap-station, before and after it is consumed by the FILL-RS event. (i.e., If a black
in-flowing edge is selected in the solution, the black out-flow edge has to also be selected
(i.e., continuity of resource-states).

Fill-RS (40Sec)
(CS1)

Edg
e3

{B
U
F
F
E
R
E
D
}

Edge2
{¬ BUFFERED,¬ BUSY SIDE}

Edge1

{¬
B
U
F
F
E
R
E
D
,

¬
B
U
S
Y
S
ID

E}

Edge5{B
U
F
F
E
R
E
D}

Edg
e4

{¬
B
U
F
F
E
R
E
D
,

¬ B
U
SY

SI
D
E
}

Figure 4.9: The flow of cap-station, with different possible states, into a fill-rs event. The
event has no usage-requirements (hence, empty requirement labels). If edges 3 is selected in the
solution, edge 5 will also be selected. If either of edges 1,2 is selected, edge 4 will be selected.

When a setup duration is required between two events, weights of durations are attached
to the flow edges. Figure 4.10 shows part of the flow nextork layer of a cap-station,
parsed from the events producing a C1 order (parsed from the expanded goal-tree in
Figure 4.3); all events which uses the cap-station are shown, except for the delivery
event. Since the cap-station is a resource available by the environment (i.e., declared
as such in the resource-meta info, as opposed to being producible or consumable as a
result of executing a plan action), a source and a sink event are created to depicted the
initial production and the final consumption of the resource by the system. Source and
sink events have usage-requirements similar to plan-events. The colors of the flow edges
depicts different edge-states. Only a single inflowing and a corresponding outflow edge
to an event shall be selected in the solution-schedule.

4.4.3 MIP Model

The event-based representation encodes a scheduling problem as a commodity flow mul-
tilayer network of event nodes (i.e., an event-precedence base-graph and resource flow
layers). The scheduling model uses an MIP solver to expand a solution-schedule (i.e.,
schedule the events). The scheduler uses the event-base representation to formulate the

39

Figure 4.10: Part of the flow network layer of a cap-station resource, between the events of
the base precedence-graph. The events are parsed from a C1 expanded goal-tree. The edge

colors depicts the different states of the resource (i.e., (edge-state)). An edge flow into an event
in a state (satisfies the event preconds), and release at a (potentially) different state (i.e., the

event applies a conversion function to the edge-state; analogical to PDDL preconds and
effects). Only a single edge is allowed to flow-in or out of an event. That state of the in-flowing
edge determines the state of the out-flowing edge. The state of an edge can be read from the

event (labels) it connects.

MIP optimization problem and triggers the solver to find an optimal (or near optimal)
solution.

First, the scheduler uses the event-based representation to populate the data sets used to
build the MIP model. MIP model generation and optimization are consequently trigged.
The objective to minimize the makespan of events. The result of the optimization is a
start-time for each event, wether an event is selected in the schedule and the sequence
by a resource is allocated to events.

The MIP model relies on three atomic entities, directly deduced from the event-based
representation. Namely events, selectors and resources. Each entity can be linked to
one of the three main decisions, which our scheduler aims to determine. The times of
events, the selection of events and the sequence of events served by each resource.

40

Event-times Te

The decision variables Te indicates the start-time of an event e. Where e is in the set of
atomic events E. Event duration δe and precedence relations αe1,e2 are known apriori.

E = {1, ..n} Set of atomic events
δi Duration of event i ∈ E
αi,j ∈ {0, 1} Wether event i precedes event j, (i, j ∈ E)

Selectors Zs

A selection variable is used to groups sets of events or edges into selection groups, and
gain control over their selection in the final solution. The decision variable Zs indicates
the selection of a selection group s. A selector s has an initial selection state ωs, known
apriori.

S = {1, ..n} Set of all selection groups (i.e., selector)
ωs ∈ {0, 1} Initial selection status of a selector s ∈ S
SEs ⊂ E Subset of events selectedable by selector s ∈ S

An initially selected selector will always be included in any valid solution

ωs(1− Zs) ≤ 0 ∀s ∈ S (4.1)

A selector could additionally be used to group other selectors, forming a more complex
(select-one or select-all) selection relations (i.e., a selection group of selectors).

SGs ⊂ S Subset of selectors ⊂ S forming a run-one
selection group; s ∈ S, s 6∈ SGs

Exactly one selector is selected from a select-one-of group , iff the group selector s is
selected. This models a select-one-of relation between the selectors in SGs. For example,
this is used to model that only a single plan-event can be selected for a selected goal-
event; in Figure 4.5, only a single plan-event (dashed elliptical nodes) is selected in a
select-on-of selection group (gray scopes)∑
si∈SGs

Zsi = Zs ∀s ∈ S (4.2)

41

Whenever there is a precedence relation between two events i ≺ j (i.e., αi,j = 1), the
later event j should start after the duration of the earlier event i. This should only
be the case, iff both of the events are selected (i.e., Zsi = 1, Zsj = 1). An event i is
considered selected, iff a selector Zsi of a the group it belongs to i ∈ SEsi is selected.
Constraint (3) is used to model goal ≺ sub-goal and goal ≺ plan precedence relations
between events. For example, the precedence edges (dashed and solid) of the precedence
graph in Figure 4.5. Constraint (3) uses the big M notation to model an implication
(indicator) relation.

αi,j (−Tj + Ti + δi) ≤M(2− Zsi − Zsj) ∀i, j ∈ E {i ∈ SEsi, j ∈ SEsj , si, sj ∈ S}
(4.3)

Resource allocation sequence Xr,i,j

The decision binary variable Xr,i,j models the decision that a resource r is used (i.e.,
consumed) by event j, directly after being released (i.e., produced) by event i. The event
i belongs to the sub-set of events which produces r, EPr. The event j belongs to the
sub-set of events which consumes r, ECr. An events uses and/or releases a resource r
in a quantity Θr,e which is known aprior.

R = {1, ..n} Set of resources
ECr ⊂ E Subset of events which consumes a resource r ∈ R
EPr ⊂ E Subset of events which produce a resource r ∈ R
Θr,i Quantity required of a resource r ∈ R by event i ∈ E

After being released by an event i ∈ EPr, a resource requires a setup duration before
it becomes available for the next event j ∈ ECr. The setup duration ∆r,i.j depends on
the sequence at which the events i and j are chosen. Setup durations for all possible (
producer-event ≺ consumer-event) sequences of r are calculated apriori.

∆r,i,j Setup duration needed by resource r ∈ R to serve
event i ∈ EC

r directly after serving event j ∈ EC
r

Whenever a sequence of events (i ≺ j) is allocated to r (i.e., Xr,i,j = 1), the later event
j can is scheduled to take place after the earlier event i had finished, in addition to any
setup duration needed by r (to become available, between the events i and j).

− Tj + Ti + δi + ∆r,i,j ≤M(1−Xrij) ∀r ∈ R, ∀i ∈ EPr, ∀j ∈ ECr (4.4)

42

We assume an event j ∈ ECr can consume only a single unit of resource r through
any chosen sequence Xr,i,j (i.e., Xr,i,j has a capacity of 1 unit of r). Whenever an
event j ∈ ECr ∩ ESs is selected (i.e., Zs = 1), the event has to reach its consumption
capacity Θr,j of resource r. This means that the number of sequences Xr,e,j chosen in
the solution, where the event j appears as a consumer, has to equal the consumption
capacity of the event. (i.e., the total in-flow of r to a selected event j, has to be equal
to its consumption-capacity∑
i∈EPr

Xrij = Zs .Θrj ∀j ∈ ECr ∩ SEs, r ∈ R, s ∈ S} (4.5)

We assume an event i ∈ EPr can produce only a single unit of resource r through any
chosen sequence Xr,i,j (i.e., Xr,i,j has a capacity of 1 unit of r). Whenever an event
i ∈ EPr ∩ ESs is selected (i.e., Zs = 1), the event has to reach its production capacity
Θr,j of resource r. This means that the number of sequences Xr,e,j chosen in the solution,
where the event i appears as a producer, has to equal the production capacity of the
event. (i.e., the total out-flow of r from a selected event i, has to equal to its production-
capacity∑
j∈ECr

Xrij = Zs .Θri ∀ i ∈ EPr ∩ SEs, r ∈ R, s ∈ S} (4.6)

Finally, the completion time of an event e ∈ E should be less than the completion time
of the schedule

Ti ≤ TMax ∀i ∈ E (4.7)

This resource-allocation modelling does not account for different resource-states. It
merely assumes that each resource producer is connected by a single edge to the each
resource consumer. This model has been extended to represent different edges for dif-
ferent resource-states. Events are only connected by an edges occasionally (iff the edge
state satisfies the usage-requirements of the events it connects). The event-based model
is responsible for generating the edges, the MIP model was extended to encode multi-
ple potential edges between the events, and flow continuity of edge-states inflowing and
out-flowing to an event.

4.5 Implementation

This section describes the implementation aspects of our approach. It explains the exten-
sion to the life-cycles of the goal reasoning model; the life-cycle of the newly developed

43

scheduling model and how the event-based model is formulated and used to populate
the MIP formulation.

4.5.1 Goal Reasoning Model

Our approach employs a goal reasoning model to serve two main functions. Firstly, it
provides a vessel for encoding the tasks needed to achieve a desired objective in the PDDL
domain. Tasks and their logical relations are formulated into a goal-tree. Secondly, the
goal reasoning model is used to execute the goals, according to a time schedule and
resource allocation schedules, without violating any precedence relations encoded by the
goal-tree.

After formulation and expansion of the goal-tree, the information coded by the goal-tree
is parsed to generate a scheduling model, which is used to communicate with the MIP
solver. Finally, the goal-tree is amended to reflect the solution-schedule, and execution
is started. This behaviour is by implemented by extending to the goal-reasoning model
of [25].

Model Extensions

Our task-level encoding and scheduled execution relies on the following extensions made
to the goal reasoning model of the Clips-Executive.

• A goal can commit to plans and sub-goals simultaneously.

• A new goal sub-type (i.e., SCHEDULE-SUBGOALS) was developed, to encode a precedence-
relation between two goals as well as execute the sub-goals in compliance with a
sub-goal start-times, the precedence of sub-goals and resource allocation schedules.

Goal Life-cycle

A goal model tracks the life-cycle of a goal throughout its different stages. Furthermore,
a goal sub-type defines the interaction between a goal and its children (i.e., sub-goals and
plans) during the life-cycle. For SCHEDULE-SUBGOALS sub-type the following behaviour
is implemented. A goal is:

• Formulated when its parent has been selected

• Selected when all of its sub-goals are selected (i.e., top-down selection)

• Expanded when all of its plans and selected sub-goals were expanded (i.e., bottom-
up expansion)

44

• Committed when all its sub-goals have been completed (i.e., bottom-up commit-
ment); the goal start-time has been reached; no other goal requires any of it’s
required-resources, earlier than this goal. Upon committing, a goal attempts to
acquire the required-resources

• Dispatched when all of its required-resources have been acquired. The goal is
then consequently executed by starting a plan

A goal remains in an expanded state till its start-time is reached. Start-times are deter-
mined as a result of scheduling or any other temporal reasoning process.

4.5.2 Scheduling Model

As the scheduler is integrated within a goal reasoner, the scheduling model can be viewed
as sub-model, within the goal-reasoning model. The scheduling model acts as an inter-
mediate layer between goal-reasoning and scheduling (for example, using a MIP solver),
by encoding the scheduling problem and interacting with the solver.

Similar to a goal life-cycle, the scheduling model relies on a life-cycle of a schedule
instance, keeping the scheduling process independent from the goal reasoning; the entire
life-cylce of a schedule instance takes place during goal expansion. This decoupling
has two main advantages. First, it allows several scheduling processes with different
scheduling parameters to be started simultaneously, for the same goal-tree. Furthermore,
it helps maintain transparency to the technology used by the scheduler. Indeed, the MIP
solver could be easily altered or replaced by another scheduler without influencing the
interaction between the goal reasoning and the scheduling models.

Event-based representation

The scheduling model parses a fully expanded goal-tree to a corresponding homogeneous
event-based representation. Entities and relations encoded previously by the tree (e.g.,
goals, plans, resources and resource-requirements) are parsed into a flatter representation
of events and a edges between the events.

Schedule is the entity central to scheduling model, modelling an instance of a schedul-
ing process (analogical to a goal in the goal reasoning model). The schedule mode tracks
the life-cycle of the schedule through the scheduling process. Listing 4.3 show the defi-
nition of a schedule.

1 (deftemplate schedule
2 (slot id (type SYMBOL))
3 (slot mode (type SYMBOL))
4 (slot solver-status (type SYMBOL))
5 (multislot solver-params (type SYMBOL))

45

1 (deftemplate schedule-event
2 (slot sched-id (type SYMBOL))
3 (slot id (type SYMBOL))
4 (slot entity-id (type SYMBOL))
5 (slot entity-at (type SYMBOL) (allowed-values START END))
6 (slot duration (type INTEGER) (default 0))
7 (slot lbound (type FLOAT) (default 0.0))
8 (slot ubound (type FLOAT) (default 1500.0))
9 (slot scheduled (type SYMBOL) (allowed-values TRUE FALSE))

10 (slot scheduled-start (type INTEGER) (default 0))
11)

Listing 4.4: Definition of an atomic event, in the event-based representation of the scheduling
model. An event tracks of an identifier for the entity it belongs to (such as, a plan, a goal or a
resource); whether the event is selected (i.e., scheduled); start-time and duration of the event.
Upon formulation, the duration and the initial selection status are specified. Upon expansion

(by calling the solver), the start-time and wheter the event is eventually scheduled in the
solution, are determined.

6 (multislot goals (type SYMBOL))
7 (multislot resources (type SYMBOL))
8 (multislot dispatch-time (type INTEGER)))

Listing 4.3: Definition of a schedule, the entity central to the scheduling model. A schedule
tracks the life-cycle of a schedule instance through the scheduling process, via its mode; which
goals and resources the scheduling is performed for; any solver parameters used to influence the
solver’s algorithm or define solving strategies (e.g., define time-limit or minimum solution gap).
The schedule id is referenced by elements of the events-based representation , belonging to the

same schedule instance.

Event is an atomic event in a schedule instance. (e.g., a goal start, goal end, resource
source, resource sink or plan events). Listing 4.4 shows, the definition of a schedule
event.

Precedence is a relation between events a ≺ b, modelling that ” event a finishes before
event b starts”. For example, a precedence relation exists between a goal and each of its
children (i.e., goal ≺ sub-goals and goal ≺ plans).

Usage requirement is a relation that exists between an event and a resource. An event
consumes (or produces) a resource at a specific resource-state and resource-setup. List-
ing 4.6, shows the definition of a schedule’s usage-requirement

1 (deftemplate usage-requirement
2 (slot sched-id (type SYMBOL))
3 (slot event-id (type SYMBOL))
4 (slot resource-id (type SYMBOL))
5 (slot usage-units (type INTEGER))
6 (multislot resource-state (type SYMBOL))
7 (multislot resource-setup (type SYMBOL)))

46

Listing 4.5: Definition of a usage-requirement of an event, in the event-based representation of
the scheduling model. The usage-units of the requirement also determines wheter its

consumption-requirement (i.e., units < 0), or a production-requirement (i.e., untis > 0).

Setup edge is a relation that exists between two events and a resource. It means that a
resource can be used by the consumer event, directly after being released by a producer
event. The duration needed between the events is the setup-duration. An event produces
a resource at a specific resource-state.

1 (deftemplate setup-edge
2 (slot sched-id (type SYMBOL))
3 (slot resource-id (type SYMBOL))
4 (slot producer-event (type SYMBOL))
5 (slot consumer-event (type SYMBOL))
6 (slot duration (type INTEGER))
7 (multislot resource-state (type SYMBOL)))

Listing 4.6: Definition of a resource setup-edge between two events, in the event-based
representation of the scheduling model. Setup durations are determined apriori.

Resource allocation the sequence of events served by a resource. Formulated for each
resource with an initially empty event-sequence. Upon expansion, The sequence is pop-
ulated with the allocation-schedule.

Schedule Life-cycle

A schedule instance goes through the stages of the scheduling process, in a life-cycle
analogical to a goal life-cycle. The entire life-cycle of a schedule takes place during the
expansion of a goal.

• Formulated when a goal of SCHEDULE-SUBGOALS sub-type and SCHEDULE goal-
class is expanded. During formulation, sub-goals in the goal’s sub-tree, the set
of available resources, and solver parameters are specified. Upon formulation, the
event-based representation is formulated for the specified goal and resource sets.
After that, the schedule is selected.

• Selected, calling the solver to populate the datasets; generate the optimization
model; triggers the optimization.

• Expanded when a solution is found (or infeasibility is proven)

• Committed, post-processing the goals; a plan is selected; resource-setup goals are
formulated for each goal

• Dispatched, specifying the start-times of goals. This result is a scheduled goal-
tree, ready to be executed.

47

Several schedule instances could be formulated and expanded for the same set of goals,
before a schedule instance is committed. A schedule will only effect the goals, when the
instance is committed.

Setup Durations

knowing the setup states (i.e., consumption-setup and production-setup) of each plan.
An estimate is calculated of how long it would take to change from any production-setup
to any consumption-setup. The setup duration needed by a resource to serve a plan a
after being released be plan b (i.e., a ≺ b, wrt the resource), is the duration needed to
change the setup predicate from the production-setup of a to the consumption-setup of
b. Estimates for all the setup durations is calculated apriori.

Lower-bound Calculation

Giving a lower-bounds for the variables of a minimization problem is employed by
the branch-bound algorithm to speed-up the solution process. A lower-bound for a
goal-start event,a lower-bound of 0, if no sub-goals exits; plan-start event has the
same lower-bound as its goal-start event; goal-end event has a lower-bound equal its
plans-start in addition to the duration of its shortest plan; goal-start event has a
lower-bound equal to the highest lower-bound of its sub-goal’s goal-end events.

Post Processing

For an expanded goal-tree of sub-type SHCEDULE-SUBGOALS, to start committing to goals,
the star-times of goals has to be determined first. Several schedule instances could be
formulated, selected and expanded. Yet, in order determine the start-times of goals, a
single schedule has is committed and dispatched. Once a schedule instance is commit-
ted. The goal-tree is amended with the schedule execution-information. The following
amendments are made to the expanded goal-tree, by post-processing the event-based
representation of a schedule instance.

• Plan selection all non-scheduled plans are removed.

• Plan resources are elevated to become goal-resources. This is useful during
execution; goals can only be dispatched after they had acquired their goal-resources.

• Setup goals are formulated for a resource upon post-processing of it’s resource-
allocation. A setup is needed when there is a (producer-event ≺ consumer-event)
pair in the event-sequence which requires two different setup states (i.e., the usage-
requirements of the events has a different resource-setup).

48

The scheduling model serves as a communicator between the solver and the Clips-
Executive. The scheduler uses the event-based representation to populate the data-sets
needed to generate the MIP model. The scheduler also specifies any solver parameters
needed by to influence the solving algorithms or alter the solution strategy (such as,
setting a time limit).

4.5.3 MIP Model Generation

Upon fully formulating a schedule instance and its event-based representation, the MIP
solver is called to populate the data-sets, used to generate the MIP model. Here we revisit
the MIP model, giving more attention to the meaning of the date-sets and what does it
correspond to from previous models. We use the notation =̂ to express a correspondence
relation, bold letters to represent entities of the event-based model and sans sreif for
their parameters. For the purpose of completion and easier viewing, the entire MIP
model is shown below, fitted in a single page.

49

Data Sets
E Set of atomic events =̂ (Event::event-names)

S Set of selectors-names =̂ (Event::entities)
(i.e., plans, goals or resources)

R Set of resource-names =̂ (Schedule::resources)

Indices
ECr ⊂ E Subset of events which consumes a resource r ∈ R;

=̂ Event::event-name of events which has
a negative Usage-Requirement::units of r

EPr ⊂ E Subset of events which produce a resource r ∈ R;
=̂ Event::event-name of events which has
a positive Usage-Requirement::units of r

SEs ⊂ E Subset of events in a selection group, of selector s ∈ S;
=̂ Event::event-names with the same Event::entity
(i.e., events ∈ same plan or the same goal)

SGs ⊂ S A select-one-of selection group of selectors, s ∈ S, where is s 6∈ SGs;
=̂ Events::entity of plans in a goal; s =̂ the goal
(i.e., plans of a goal)

Parameters
M A number larger than the upper bound, used to linearly model indicator constraints
αi,j ∈ {0, 1} wheter event i ∈ E precedes event j ∈ E; =̂ precedence
δi Duration of event i ∈ E; =̂ (Events::duration)
∆r,i,j Setup duration needed by resource r ∈ R to serve

event i ∈ EC
r directly after serving event j ∈ EC

r

Θr,i Quantity required of r ∈ R by event i ∈ E; =̂ (Usage-Requirement::units)
ωs ∈ {0, 1} wheter a selector s ∈ S is initially set to true; =̂ (Event::scheduled)

50

Decision Variables
Xr,i,j = {0, 1} Resource r ∈ R serves event j ∈ EC

r directly
after serving event i ∈ EP

r

Zs = {0, 1} Selector s ∈ S is selected
Te ∈ Z Time of event e ∈ E
TMax ∈ Z Completion time of all goals

Objective function: Minimize(TMax)
Constraints
ωs(1− Zs) ≤ 0 ∀s ∈ S (4.1)∑
s∈SGg

Zs = Zg ∀g ∈ S (4.2)

∑
j∈ECr

Xrij = Zs .Θri ∀ i ∈ EPr {i ∈ SEs, r ∈ R, s ∈ S} (4.3)

∑
i∈EPr

Xrij = Zs .Θrj ∀j ∈ ECr {j ∈ SEs, r ∈ R, s ∈ S} (4.4)

αi,j (−Tj + Ti + δi) ≤M(2− Zsi − Zsj) ∀i, j ∈ E {i ∈ SEsi, j ∈ SEsj , si, sj ∈ S}
(4.5)

− Tj + Ti + δi + ∆r,i,j ≤M(1−Xrij) ∀r ∈ R, ∀i ∈ EPr, ∀j ∈ ECr (4.6)
Ti ≤ TMax ∀i ∈ E (4.7)

Solution Processing

The optimization is performed asynchronously by the solver. The optimization status
is checked periodically until an optimal solution has been is returned (or infeasibility
has proven). Consequently, the solution of the MIP model, specifying the values of
each decision variable, is processed and the corresponding event-base representation is
updated. After processing the solution, the schedule instance mode is switched to
expanded.

The decision variables are processed as follows:

• For each Te = x ∈ Z
=̂ the Event::start-time is set to‘ x, for all events with Event::name = e.

• For each Zs = 1,
the Event::scheduled is set to True, for all events with Event::entity = s.

51

• For each r ∈ R and all selected sequences Xr,e1,e2, Xr,e2,e3, .., Xr,en−1,en = 1
=̂ the Resource-Allocation::event-sequence is set to {e1, e2, e3, .., en−1, en}, for
Resource-Allocation::resource = r.

4.5.4 Execution

A goal with sub-type SCHEDULE-SUBGOALS is committed when

• The goal start-time has been reached
• All sub-goals were completed
• It is the next goal allocated, for all of its goal-resources (i.e., no other goal is

scheduled to use any of the goal-resources earlier than this goal)

Unpon commitment, a goal attempts to acquire the required goal-resources. Upon suc-
cessful acquisition, the goal is dispatched and the execution of its plan is started.

This execution scheme is very useful in the unfortunate case that the temporal schedule
is violated during execution (e.g., a goal took longer than expected, for instance if an
MPS breaks; the estimate of a plan or a setup duration was inaccurate). Indeed, if a
goal is delayed, it could at worst cause a delay in the execution of the goal-tree. The
only case when the execution of a goal-tree would fail, if an action fails. In this case, it
is necessary to start formulating a new goal-tree.

The sequence by which plans that directly depend on each other are executed, is insured
by the sub-goal relations. For example, a C1 order MOUNT-CAP goal can only start after
the MOUNT-RING1 sub-tree and the PREPARE-CAPSTATION sub-tree have completed

The sequence by which plans which require the same resource are executed, is ensured
by the resource allocation schedule. This ensures that a delay for a resource-allocation
caused by a delayed goal in some sub-tree, effects the allocation of the goals using that
same resource, in the other sub-trees. For example, a robot is allocated to MOUNT-RING1
followed by SETUP001-ROBOT, FILL-RING2, SETUP002-ROBOT, FILL-CAP goals. If the
robot was delayed on the first goal, we need to make sure it still starts next goals
according to the resource-allocation sequence. Otherwise, the FILL-RING2 goal will
starve, or it could cause a threat that breaks a precondition (e.g., like SETUP002-GOAL
moves the robot to a location unexpected by FILL-RING2).

Furthermore, the set of goal-resources is acquired (upon committing), only after we
already had made sure that the goal is the next allocated for each resource in set. This
prevents situations where a delayed goal attempts to acquire a resource, only to find
that the resource had been acquired by another goal where its dispatch-time is started.
This prevents deadlock situations where several goals compete for a acquiring a shared
subset of resource, partially held by each of them.

52

Locking

Resource locking is performed using the mutex mechanism developed by , with the only
adjustment that goals do not immediately fail when they’re unable to acquire a goal-
resource. A goal tries to acquire the goal-resources till it either succeeds, or the execution
fails.

Remote Executors

Even though goal reasoning and scheduling are performed by the central reasoning agent,
actions are only executable by a remote acting agent (e.g., a robot is responsible for
executing its move, pick-wp actions). We extended the current CX agent to only RUN
actions where the agent-name is mentioned as part of the PDDL action parameters.

An CX agent is stared on each robot. All agents (i.e., central-reasoner and remote-
executors) synchronize their world model. Remote-executors are responsible for formu-
lating their local maintenance goals (e.g., periodically sending the beacon-signal).

During execution, the central reasoner creates a remote-action world-model fact for
PENDING actions which are not executable by the reasoner. The remote-action is syn-
chronized with all agents, but only parsed into a plan-action by the proper agent (i.e.,
the agent which is mentioned in the action parameters). Consequently, the plan-action
is executed normally by the remote agent, and the remote-action world-model fact is
updated with the execution status. When the EXECUTION-SUCCEEDS the centralized-
reasoner applies the effects. That achieves separation between reasoning and acting,
while maintaining the remote agents ability to make local decisions. Indeed, reason-
ing about actions executability, preconditions and effect are performed by the central
reasoner regardless of who performs the action.

Partially Instantiated Actions

Sometimes it is useful to decide as late as possible on the particular grounding of some
action-parameters, leaving them open during goal-reasoning and scheduling. Such pa-
rameters could be a dynamic property of the environment, or parameter influenced by
the particular plan ordering which the scheduler later determines.

For example, a retrieve-cap plan should specify which of the cap-carriers available at
each of the three shelf positions of a cap-station is used to fill the cap-station. The same
cap-carrier is the also used by the next clear-cs goal to empty the cap-station. Making
such grounding decision to by the scheduler would unnecessarily increase the complexity
of scheduling. Such a decision is only valuable during execution. Yet, it is still necessary
to distinguish different cap-carriers used by two distinct retrieve-cap goals. Another
prominent example is for the fill-rs and/or mount-ring goals which use the same
ring-station’s slide. Their plans should be instantiated specifying the number of bases

53

added to the slide, thus far. Yet, there is no way to predicate this information before
the scheduler had made its decision about the particular execution order of plans.

We devised a mechanism which allows us to specify a partial grounding of parameters
during plan construction, leaving some binding decision to be later determined, when
the action is selected for execution. The plans are instantiated using unique binding-
symbols, created in relation to a binding constraint. When needed, a unification operator
is invoked to determine the appropriate substitutions for the symbols, by matching the
binding constraint to an existing world-model fact. The unification takes place right
before an action is executed (i.e., action is selected in PENDING state).

For the retrieve-cap example, during plan construction a new binding-id B#01 is
used to create the binding constraint (wp-on-shelf C-CS1 B#01?cc B#01?spot). The
symbols B#01?cc and B#01?spot are used to instantiate the action-parameters. When
the action is selected, the unification operator is invoked; the constraint (wp-on-shelf
C-CS1 B#01?cc B#01?spot) is matched to the predicate (wp-on-shelf C-CS1 CC-123
RIGHT), for instance; the binding-symbols are then substituted with the matched binding
value (i.e., CC-123 and RIGHT) before the action is executed.

A binding could also be used in the definition of other bindings. For the fill-rs exam-
ple, the binding-ids B#11 and B#12 are used to create the constraints (rs-filled-with
C-RS1 B#11?rs-before) and (rs-inc B#11?rs-before B#12?rs-after). Unification
of the binding B#12 will trigger unification of binding B#11, substituting the symbol
B#11?rs-before before matching B#12’s constraint.

Furthermore, we define two different binding-policies used in matching the binding-
constraints, MATCH-UNIQUE and MATCH-ANY. Bindings using a MATCH-UNIQUE policy can
only match against predicates that has not been used for another binding. Once a
predicate is matched to a binding-constraint, it can not be match with a different one.
On the other hand, MATCH-ANY policy can match several distinct binding-constraints with
the same predicate.

For the retrieve-cap example, it is necessary to distinguish the different cap-carriers
used by two distinct retrieve-cap goals. For that purpose the MATCH-UNIQUE policy is
used to only ever use a cap-carrier once per binding. For the fill-rs example, we only
care to know that state of the predicates at the time of execution. For that purpose the
MATCH-ANY policy to allow several bindings to match against the same state predicate.

4.6 Evaluation

The approach was evaluated in simulation runs against the current Incremental Reason-
ing agent as a baseline. The simulation complies with the 2019 RCLL game [3] rules.
We focus here on evaluating the efficiency improvement in single order production.

54

The performance metric considered consists of:

Total production duration needed by agents to competitively complete the production
of the same order (makespan)

Scheduling duration and the effect of different order complexities on the scheduling
time

Execution failure rate by breaking logical constraints during execution)

Schedule violations and its effects on execution times

• Approximately 80 games with several order complexities (i.e., C0, C1 , C2 , C3) and
order configurations have been evaluated. The following was considered

• An average of 5 game runs per configuration.

• Configurations were run with different assumptions about robots speed. An aver-
age of 2.4 runs per configuration for a speed

• Estimates for travail durations are based on calculating the Euclidean distance
between the navgraph nodes.

• More focus has been giving to evaluating orders which are more complex orders
(C3) to produce; orders with different number of required sub-goals are considered

Figure 4.11 show production durations needed for the same configuration and speed.
Our measures seems to be consistent.

4.6.1 Duration Estimates

The duration of machine operations were fixed based on means of real world observa-
tions. Robots speeds are configured based on rough estimates of the possible speeds
of a robot in the real world. A maximum average speed of 0.5 meters per second was
initially set. It was noticed that the baseline production speed greatly surpasses the
real world observations. Indeed, when travailing duration is only a small factor of the
total production duration, the production is almost entirely determined by durations of
machine operations.

By evaluating different assumption for robot speeds, it was shown that the more crucial
the travailing duration to the production process (i.e., the bigger the factor of production
duration spent travailing), the bigger the delta by which our approach improves the
baseline.

55

Figure 4.11: Five different simulation runs for the same production configuration.

The result in figure show the production times needed by an the agents for different
speed assumption. Indeed, the optimistic speed factor of 0.5 m/sec puts the incremental
reasoning at a great advantage, since the time penalty incurred as a result of picking
a sub optimal goal is minimized. The incremental agent picks a the best possible goal
at the time of reasoning without considering or expecting future resource availability.
When travailing times are small, the best available goal is indeed the optimal goal.

On the other hand, a more realistic estimate incorporates a bigger factor of production
as travail durations. Observations of real-world games show that the biggest factor of
production time spent by robots is during travailing. Out approach is evaluated against
the baseline in a game run with different (common) speed assumption. Figure 4.12 show
the run times of a C3 order configuration where robots executes 9 sub-goal to deliver an

56

order. An optimistic, a pessimistic, and a midrange speed assumptions where evaluated.
Our approach out performs the baseline when complicated production sequences are
required, and when travailing time constitutes a big factor of production time.

Figure 4.12: A C3 configuration run with different speed assumptions

One other reason why our near optimal approach performs poorly in the optimistic
assumption is a observed systematic schedule delay.

4.6.2 Execution Delay

During evaluation an execution delay of an average of 60 seconds (from schedule) was
observed. The delay is attributed to a factor of the number of actions in a goal. By
rolling out all causes of delay, like action execution durations or poor action estimates,
the delay was found to be a factor of plan length. We use this delay to out advantage
to reflect potential real world schedule violations.

The systematic delay as well as some induced poor duration estimates were used to
evaluate the stability of our production against uncertainty. It was observed that our
centralized reasoning and scheduling approach does not break as a result of poor of
schedule violation. Our execution scheme insures that execution will continue seamlessly,
with a schedule delay. This is a result of using the allocation schedule for each resource
as well as the execution schedule.

57

4.6.3 Optimality and optimality gap

It was observed that most of the optimization time spent by the solver, is close enough
from proving optimality. We use our lower-bound estimates to give a close enough
estimate of the minimum production time. An optimality gap of 10% is evaluated in
our approach. Figure 4.13 shows that the execution time is barley affected, while the
scheduling time is reduced by an average of 95

Figure 4.13: A C3 configuration run with different speed assumptions

4.6.4 Different orders

We evaluated our approach by running different configurations of each order (i.e., C0,
C1 , C2 and C3) to get an overview on how much does our approach improve the pro-
duction of each. Figures ?? and 4.14 shows the different attempted order configurations,
evaluated for the max and midrange speed assumptions.

Worthy of noting that a C1 product (C1B), which requires the payment of two raw
material the baseline performs very poorly. This is due that lack of favouring order
oriented goals (i.e., lack of deliberation of a common goal), which renders other available
goals more favourably. This could be easily remedied by changing the goal selection
strategy to favour ring payments tasks of open C1 products.

It is observable that in the case of a C0 our approach does has no noticeable improve-
ments, indeed for a C0 the production sequence is fixed and the incremental agent as
well as the central agent execute the same sequence. When no complicated interaction
and scheduling is needed the incremental agent performs better. Nevertheless, when
complicated production sequence is needed, our approach prevails.

58

Figure 4.14: Different orders evaluated with the .5 msec robot speeds

Figure 4.15: Different orders evaluated with the .25 msec robot speeds

59

4.7 Conclusion

In order to improve production time of the current incremental goal reasoning maintained
by the Carologistics team, the world champion of the RCLL, a centralized goal reasoning
and scheduling approach was developed.

This thesis described the development and integration of a scheduling model, with in
the centralized goal reasoning model. We presented a MIP formulation, dynamically
generated by our scheduling model to solve the order scheduling problem to optimality.
To abide by the real-time requirement, it was shown that using a near optimal solution,
with an optimality gap of 10%, reduces the order scheduling time by 95%.

Our approach is evaluated in a number of simulation runs against the incremental agent.
It was shown that the more the production time spent by robot on travailing, the more
surpassing our approach becomes. Our approach also out performs the baseline when
complex production scenarios are required.

60

Bibliography

[1] David W. Aha. Goal reasoning: Foundations, emerging applications, and prospects.
AI Magazine, 39(2):3–24, Jul. 2018. doi: 10.1609/aimag.v39i2.2800. URL https:
//www.aaai.org/ojs/index.php/aimagazine/article/view/2800.

[2] E.M.L Beale. Mathmatical Programming in Practice. Pitman, 1968.

[3] Coelen, Deppe, Gomaa, Hofmann, Karras, Niemueller, Rohr, and Ulz. RoboCup
Logistics League Rules and Regulations 2019 The Technical Committee 2012 –
2019. Technical report, 2019. URL https://github.com/robocup-logistics/
rcll-rulebook/releases/download/2019/rulebook2019.pdf.

[4] William Cushing, Subbarao Kambhampati, Mausam, and Daniel S Weld. When is
temporal planning {\em really} temporal planning? Proc. of Int. Joint Conf. on
AI (IJCAI), pages 1852–1859, 2007.

[5] George B. Dantzig. Linear programming and extensions. Rand Cor-
poration Research Study. Princeton Univ. Press, Princeton, NJ, 1963.
URL http://gso.gbv.de/DB=2.1/CMD?ACT=SRCHA&SRT=YOP&IKT=1016&TRM=ppn+
180926950&sourceid=fbw_bibsonomy.

[6] Maria Fox and Derek Long. PDDL2.1: An extension to PDDL for expressing
temporal planning domains. Journal of Artificial Intelligence Research (JAIR), 20,
2003. doi: 10.1613/jair.1129.

[7] Malik Ghallab, Dana Nau, and Paolo Traverso. Automated planning - theory and
practice. Morgan Kaufmann Publishers, 2004.

[8] R L Graham, E L Lawler, J K Lenstra, and A H G R Kan. Optimization and
approximation in deterministic machine scheduling: a survey. Annals of Discrete
Mathematics, 5:287–326, 1979.

[9] Gurobi-Optimizer. OR-framwork, 2019. URL https://www.gurobi.com/
documentation/8.0/refman/index.html.

[10] Keith Halsey, Derek Long, and Maria Fox. CRIKEY - A Temporal Planner Looking
at the Integration of Scheduling and Planning. Workshop on Integrating Planning
into Scheduling, 02:46, 2004.

[11] Mario Hermann, Tobias Pentek, and Boris Otto. Design principles for industrie 4.0
scenarios. Proceedings of the Annual Hawaii International Conference on System

61

https://www.aaai.org/ojs/index.php/aimagazine/article/view/2800
https://www.aaai.org/ojs/index.php/aimagazine/article/view/2800
https://github.com/robocup-logistics/rcll-rulebook/releases/download/2019/rulebook2019.pdf
https://github.com/robocup-logistics/rcll-rulebook/releases/download/2019/rulebook2019.pdf
http://gso.gbv.de/DB=2.1/CMD?ACT=SRCHA&SRT=YOP&IKT=1016&TRM=ppn+180926950&sourceid=fbw_bibsonomy
http://gso.gbv.de/DB=2.1/CMD?ACT=SRCHA&SRT=YOP&IKT=1016&TRM=ppn+180926950&sourceid=fbw_bibsonomy
https://www.gurobi.com/documentation/8.0/refman/index.html
https://www.gurobi.com/documentation/8.0/refman/index.html

Sciences, 2016-March:3928–3937, 2016. ISSN 15301605. doi: 10.1109/HICSS.2016.
488.

[12] Till Hofmann, Nicolas Limpert, Victor Matar, Alexander Ferrein, and Gerhard
Lakemeyer. Winning the RoboCup Logistics League with Fast Navigation , Precise
Manipulation , and Robust Goal Reasoning. RobotCup, XXIII, 2019.

[13] Henning Kagermann, Wolfgang Wahlster, and Johannes Helbig. Recommendations
for implementing the strategic initiative industrie 4.0 – securing the future of german
manufacturing industry. Final report of the industrie 4.0 working group. URL
http://forschungsunion.de/pdf/industrie_4_0_final_report.pdf.

[14] Klara L. Hoffman and Ted K. Ralphs. Integer and Combinatorial Optimization. En-
cyclopedia of Operations Research and Manage-ment Scienc, pages 771–783, 2013.
ISSN 01605682. doi: 10.2307/2583737.

[15] A. H. Land and A. G. Doig. An Automatic Method of Solving Discrete Programming
Problems. Econometrica, 28(3):497–520, 1960.

[16] Francesco Leofante, Erika Abraham, Tim Niemueller, Gerhard Lakemeyer, and
Armando Tacchella. Integrated Synthesis and Execution of Optimal Plans for Multi-
Robot Systems in Logistics. Information Systems Frontiers, pages 1–21, may 2018.
ISSN 1572-9419. doi: 10.1007/s10796-018-9858-3. URL https://doi.org/10.
1007/s10796-018-9858-3.

[17] Matthias Löbach. Centralized Global Task Planning with Temporal Aspects on a
Group of Mobile Robots in the RoboCup Logistics League. Master’s thesis (to ap-
pear), RWTH Aachen University, 2017.

[18] Lars Lütjens, Martin Bichler, Stefan Minner, and Albinski Syzmon. Task Allocation
for Fleets of Mobile Autonomous Picking Robots, 2018. ISSN 1098-6596.

[19] Drew McDermott. The Formal Semantics of Processes in PDDL. In Proceedings
of the Workshop on PDDL at the 13th International Conference on Automated
Planning & Scheduling (ICAPS), 2003.

[20] Merriam-Webster. OR, 2019. URL https://www.merriam-webster.com/
dictionary/operations%20research.

[21] Hans Mittelmann. OR, 2019. URL http://plato.asu.edu/ftp/lpcom.html.

[22] Hans Mittelmann. OR, 2019. URL http://plato.asu.edu/ftp/milpf.html.

[23] George L. Nemhauser and Laurence A. Wolsey. Integer and Combinatorial Opti-
mization. Wiley-Interscience, New York, NY, USA, 1988. ISBN 0-471-82819-X.

[24] Tim Niemueller, Gerhard Lakemeyer, and Alexander Ferrein. Incremental task-level
reasoning in a competitive factory automation scenario. In AAAI Spring Sympo-
sium: Designing Intelligent Robots, 2013.

62

http://forschungsunion.de/pdf/industrie_4_0_final_report.pdf
https://doi.org/10.1007/s10796-018-9858-3
https://doi.org/10.1007/s10796-018-9858-3
https://www.merriam-webster.com/dictionary/operations%20research
https://www.merriam-webster.com/dictionary/operations%20research
http://plato.asu.edu/ftp/lpcom.html
http://plato.asu.edu/ftp/milpf.html

[25] Tim Niemueller, Till Hofmann, and Gerhard Lakemeyer. Goal reasoning in the
CLIPS executive for integrated planning and execution. In Proceedings of the
Twenty-Ninth International Conference on Automated Planning and Scheduling,
ICAPS 2018, Berkeley, CA, USA, July 11-15, 2019., pages 754–763, 2019. URL
https://aaai.org/ojs/index.php/ICAPS/article/view/3544.

[26] Ngutor Nyor, Adamu Idama, J.O. Omolehin, and K. Rauf. Operations Research-
What It is all About. Universal Journal of Applied Science, 2(3):57–63, 2014. doi:
10.13189/ujas.2014.020301. URL http://www.hrpub.org.

[27] Jason Chao Hsien Pan and Jen Shiang Chen. Mixed binary integer programming for-
mulations for the reentrant job shop scheduling problem. Computers and Operations
Research, 32(5):1197–1212, 2005. ISSN 03050548. doi: 10.1016/j.cor.2003.10.004.

[28] Mark Roberts, Swaroop Vattam, Ronald Alford, Bryan Auslander, Justin Karneeb,
Matthew Molineaux, Tom Apker, Mark Wilson, James McMahon, and David W.
Aha. Iterative goal refinement for robotics. In A. Finzi & A. Orlandini (Eds.)
Planning and Robotics: Papers from the ICAPS Workshop, Portsmouth, NH, USA,
2014. URL http://www.nrl.navy.mil/itd/aic/sites/www.nrl.navy.mil.itd.
aic/files/pdfs/Roberts-2014-ICAPS-WS.pdf.

[29] Rjm Rob Vaessens. Generalized job shop scheduling : complexity and local Gener-
alized Job Shop Scheduling : Complexity and Local Search. PhD thesis, Universiteit
Technische Doi, Eindhoven, Netherlands, 1995.

[30] Thomas Voß, Jens Heger, Nicolas Meier, and Anthimos Georgiads. Optimal robot
scheduling of an AGV in the RCLL and introduction of team Leuphana. 2016.

[31] Robert M. Wygant. CLIPS — A powerful development and delivery expert sys-
tem tool. Computers & Industrial Engineering, 17(1-4), 1989. doi: 10.1016/
0360-8352(89)90121-6.

63

https://aaai.org/ojs/index.php/ICAPS/article/view/3544
http://www.hrpub.org
http://www.nrl.navy.mil/itd/aic/sites/www.nrl.navy.mil.itd.aic/files/pdfs/Roberts-2014-ICAPS-WS.pdf
http://www.nrl.navy.mil/itd/aic/sites/www.nrl.navy.mil.itd.aic/files/pdfs/Roberts-2014-ICAPS-WS.pdf

	Introduction
	Background
	RoboCup Logistics League
	Operational Research
	Allocation Problem (Routing)
	Temporal Sequencing
	mip solving

	Resource Scheduling
	Planning
	Classical and Non-Classical Planning
	Domain Definition Language (PDDL)

	Goal Reasoning Model
	CLIPS Executive

	Incremenetal Goal Reasoning

	Related Work
	Approach
	Overview
	Resource Declaration
	The Goal Reasoner
	The Expanded Goal-Tree
	The Scheduled Goal-Tree
	Execution

	The Scheduler
	Pre-processing
	Event-based representation
	mip Model
	Event-times Te
	Selectors Zs
	Resource allocation sequence Xr,i,j

	Implementation
	Goal Reasoning Model
	Model Extensions
	Goal Life-cycle

	Scheduling Model
	Event-based representation
	Schedule Life-cycle
	Setup Durations
	Lower-bound Calculation
	Post Processing

	mip Model Generation
	Solution Processing

	Execution
	Locking
	Remote Executors
	Partially Instantiated Actions

	Evaluation
	Duration Estimates
	Execution Delay
	Optimality and optimality gap
	Different orders

	Conclusion

	Bibliography

