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1 Introduction

Any agent on a robotic platform, that operates in the real world, has to deal with all

the unexpected events and failures that may happen. Most high-level control agents

try to keep and maintain a belief about the current state of the world. The belief is

then used to decide how to act in order to pursue its objectives.

Actions executed in the real world may fail randomly, actions have an unexpected

outcome, unexpected events occur or hardware fails. To cope with these mishaps

and stay operable, an agent has to be able to determine the exact cause and effect of

the failure. This is called diagnosis and plays an important role in enabling robots

to operate in the real world.

Consider a robot that operates machines in a factory. Its task is to retrieve parts

from the output of a machine, transport it to a different machine and place it into

the input, resulting in the following history:

H = {grab(R1, P, A), move(R1, A, B), place(R1, P, B), instruct(B)}

After executing this task and transporting product P from machine A to B, the

robot senses that machine B does not react as expected after putting something into

the input. Ignoring this inconsistency may bring the production to a hold, so it is

necessary that the robot determines the cause of the inconsistency and what effect

it has on the world. There are several possible reasons, such as failing picking or

putting the product, a failure in the navigation or even broken machines. Diagnosis

algorithms aim at determining all the possible explanations and reason about these

possible explanations such that the agent can make proper decisions afterwards.

In order to enable the agent to maintain a consistent belief about the state of

the world, we are mainly interested in the actual state of the world and the cause

of the failure. As mentioned above, an agent will try to execute a sequence of

actions. History-based diagnosis aims to accommodate a history of executed actions

by inserting and modifying actions, such that the history is consistent with the

observation again. This is done by inserting fitting exogenous actions and replacing

actions with faulty alternatives, such that resulting belief of the alternated history is

consistent with the observations.
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Following the previous example, the robot first executed a pick action to pick product

P from machine A. It then drove to machine B and put the product into the input.

A possible explanation for machine B not reacting to the product, would be that

the grab action failed and that the product is still at the output of machine A.

Therefore, the history of executed actions can be adapted by replacing the grab

action with a failed variant, resulting in the adapted history H ′1:

H ′1 = {grab failed(R1, P, A), move(R1, A, B), place nothing(R1, P, B)}

Another explanation would be that the robot dropped the product while driving to

machine B. In this case, an exogenous action drop can be inserted into the history,

resulting in the adapted history H ′2:

H ′2 = {grab(R1, P, A), move(R1, A, B), drop(R1, P), place nothing(R1, P, B)}

In both cases propagating the effects of the adapted histories onto the initial situation

would result in a consistent belief about the world state and the agent can decide on

the next goals, e.g. removing the remaining product from machine A.

However, in order to find all possible consistent history adaptations for given obser-

vations and a given history of executed actions, one needs a description of all possible

action variations and exogenous actions. With these descriptions, it is possible to use

existing planning algorithms to generate diagnosis candidates. Existing history-based

diagnosis approaches search for all possible replacements and insertions that are

consistent with an observation. This is sufficient for reevaluating the outcome of a

failed plan.

However, under the assumption that most failures are caused by malfunctioning

hardware components, re-evaluating each action isolated is ignoring the fact that

a malfunctioning hardware will also influence other actions. The malfunctioning

hardware not only influences the actions of the executed history, but actions of future

plans as well.

In this thesis, we want to extent existing history-based diagnosis approaches by

incorporating knowledge about the hardware platform. A hardware platform consists

of several component. The agent may already have components models in order to

decouple the planning process from the hardware. Hofmann et al. (2018b) introduced

a form of abstract planning, which uses hardware models to transform an abstract plan

into an executable one. We want to use the component models and their constraints

on actions in order to not only determine the state of the world after the failed plan,

but also enable the agent to determine the underlying failure, recovering from it, if

possible, and make more informed decisions. We also examine to which extent the
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component models can be used for restricting the planning process used to generate

diagnosis candidates. By keeping a history of state changes of each component, all

possible action variations at a certain point of time can be determined. By encoding

the platform models into the domain model and using them as a guide to create

all needed action variations, this approach aims to tackle the drawbacks of the

history-based diagnosis approach while keeping the beneficial outcome about what

actually happened.

After creating diagnosis candidates that explain an observation, we want to use

active diagnosis, which is a method for selecting sensing actions in order to rule out

false diagnosis candidates. The knowledge about which component is more likely to

fail can be used when deciding for a sensing action, in order to check the most likely

cause first.

Eventually, the agent identified one or more valid diagnosis candidates and their

effects onto the world without being able to reduce the set of diagnosis candidates

any further. By trying to repair or reset possible faulty hardware components, the

agent can try to recover from the detected failure and may continue the production.

However, in some cases the recovery fails or the agent is not able to reset certain

hardware components. In these cases, the agent can decide to disqualify itself from

continuing the operation and call for human intervention. In multi-robot scenarios,

the other robots will benefit from this decision, since the broken robot would possibly

block resources that could be used by other functional robots.

We will first introduce the relevant background of planning, platform models and the

domain in which the approach will be evaluated in Chapter 2. Afterwards related

work and different approaches to the diagnosis problem will be presented in Chapter 3.

The actual approach is described in more detail in Chapter 4. We will then evaluate

our approach in the RoboCup Logistics League domain and present the results in

Chapter 5, before we conclude in Chapter 6.
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2.1 Diagnosis

In the context of high-level control agents, diagnosis is the task of determining

what is wrong. However, there are differences in different diagnosis approaches

about ”what” actually means. Given an observation, that contradicts normal or

expected behaviour, diagnosis approaches search for consistent explanations of the

inconsistency. In the context of a high-level control agent, which has a description of

the controlled system available, diagnosis algorithms aim to determine components of

the system, that could explain the observation if assumed to act abnormally (Reiter,

1987). These diagnosis approaches are described as model-based, since they utilize

a model of the system. Of course, there may exist multiple possibilities for faulty

components, that could explain the observation. So, rather than searching for one

set of components, diagnosis algorithms determine multiple diagnosis candidates. A

diagnosis candidate is a set of components assumed to act abnormally, consistent

with the observation that contradicted the assumed behaviour.

In the context of an agent, that executes actions in order to interact with the envi-

ronment and senses failures as observations in the environment, that are inconsistent

with the expected effects of the executed actions, the actions can be viewed as

components of a system. Consistency-based diagnosis approaches try to mark actions

as abnormal in order to explain the inconsistent observations.

2.1.1 Explanatory Diagnosis

In dynamic environments, it a makes more sense to focus on action sequences,

that modified the environment, than to determine faulty components of a system

in order to explain failures (Mühlbacher and Steinbauer, 2016b). So, explanatory

diagnosis approaches search for a sequence of actions, that explains an observation,

leading to an explanation about what happened, rather than what is wrong. In

the diagnosis of dynamic systems, this approach can help determining the actual

resulting state of a system based on a contradicting observation (Mcllraith, 1999). By

evaluating the conjectured actions and their effects on the world, an high-level agent

can determine hypothetical world states that are consistent with the observation.
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Therefore, in contrary to typical model-based diagnosis approaches, explanatory

diagnosis approaches use a description of possible executable actions and their effects

together with an observation and searches for sequences of actions, that, for a given

initial state, are consistent with the observations. Note, that the initial state can

be the result of an already executed sequence of actions. Therefore, explanatory

diagnosis searches for possible consistent continuations for a given history of executed

actions. However, the sequence of already executed actions is not re-evaluated in

the hindsight of a unexpected observation. Mcllraith (1999) showed that calculating

explanatory diagnosis candidates is analogous to planning.

Following the example from Chapter 1, a possible explanatory diagnosis candidate of

the observed unexpected reaction of the machine B would be conjecturing a knock

off action to the end of the executed history, resulting in the continued history

H ′3.

H ′3 = {grab(R1, P, A), move(R1, A, B), place(R1, P, B), knock off(R1, P, B)}

However, another explanation would be a failed grab action at machine A, resulting

in the product still being at machine A. Explanatory diagnosis approaches are not

able to generate such an explanation, since past actions do not get reevaluated.

2.1.2 History-based Diagnosis

For any high-level control agent that controls a robot in a dynamic environment

by selecting sequences of actions to reach certain goals, the explanatory diagnosis

approach is not sufficient to deal with any undetected failures during the action

execution. Therefore, Iwan (2002) presented an approach that diagnoses a history

of executed actions in the hindsight of an observation, which is inconsistent with

the expected world state. The history-based diagnosis then searches for consistent

alternations of the history, by replacing actions with faulty variations and inserting

exogenous actions. A faulty variant of a grab action could model that the robot

grabbed the wrong object, or no object at all. A diagnosis candidate of such a

history-based diagnosis approach is given as an alternated version of the history of

executed actions. The diagnosis candidates have to be consistent with the observation

and executable given the description of actions, their preconditions, their effects and

the initial state of the world. Note, that events that are not under the control of

the agent are modelled as exogenous actions and can be inserted into the history at

any point. It is shown that, similar to calculating explanatory diagnosis candidates,

calculating history diagnosis candidates is analogous to planning as well (Sohrabi

et al., 2010).
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In our example, a possible explanation, generated by a history-based diagnosis

approach, would be replacing the grab action with a faulty alternative with no effect,

such that the position of the product is still at machine A in the resulting world

state.

H ′4 = {grab nothing(R1, P, A), move(R1, A, B), place nothing(R1, P, B)}

A different faulty action variation of the grab action may represent that the robot

did knock the product off its position, resulting in the product to be lost.

H ′5 = {grab knock off(R1, P, A), move(R1, A, B), place nothing(R1, P, B)}

Note, that in both cases the place action has to replaced by a faulty variation

as well, since there is no product hold, that can be placed. Additionally, history-

based diagnosis produce several explanations for what could have happened, but

it lacks the ability to determine the cause of a failure. Assuming that most of the

failures, that occur when executing an action, are caused by malfunctioning hardware

components, we want to integrate knowledge about the underlying hardware platform

into the diagnosis process in order to enable the diagnosis process to reason about

the underlying hardware as well.

2.2 Active Diagnosis

One characteristic, that all of the diagnosis approaches have in common, is that they

may generate multiple diagnosis hypotheses. There are different ways to decide which

diagnosis hypothesis to choose. Most diagnosis approaches follow Ockham’s razor and

choose the diagnosis with the minimal amount of assumed faults. Likewise, domain

knowledge about fault probabilities can be used to exclude unlikely hypotheses. But

even then, there might exist situations where we have to decide between multiple,

similarly likely diagnosis hypotheses.

To deal with this problem, active diagnosis can be used. Active diagnosis is an

approach that chooses suitable sensing actions for excluding hypotheses from the

set of valid diagnosis hypotheses. This is done by aggregating the shared knowledge

of all diagnosis hypotheses, containing every piece of information that is true in

every resulting world state of the diagnosis hypotheses. All sensing actions whose

preconditions are fulfilled in the common belief and exclude at least one diagnosis

candidate for each possible outcome, are suitable for reducing the set of possible

diagnosis candidates. However, it is desirable to use a minimal number of sensing

actions in order to find the true diagnosis as fast as possible.
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Following Mühlbacher and Steinbauer (2014), selecting the most desirable executable

sensing action is done by choosing the action that has the biggest impact onto the

pool of diagnosis candidates. The impact is defined as the mutual information,

which is defined in the terms of entropy implied by the probabilities of the different

diagnosis candidates:

I(α(~x);W (s)) = H(α(~x))−H(α(~x)|W (s)) (2.1)

where I(α(~x);W (s)) denotes the information gain of the sensing action α, grounded

with a parameter vector ~x, in regard to the set of diagnosis candidates W (s) in

the situation s. H(α(~x)) represents the impact of the sensing action on the pool of

diagnosis candidates and H(α(~x)|W (s)) depicts the influence of sensor noise.

Any sensing action α(~x) will split the pool of diagnosis candidates W (s) into two

parts (Ω and Λ). Ω contains all diagnosis candidates that are consistent with a

positive outcome of α(~x) and Λ contains all other candidates. Therefore, for given

probabilities psi of possible diagnosis candidates si, we can determine the probability

for the sets Ω(s)α(~x) and Λ(s)α(~x) by:

pΩ(s)α(~x) =
∑

ω∈Ω(s)α(~x)

pω (2.2)

pΛ(s)α(~x) =
∑

λ∈Λ(s)α(~x)

pλ (2.3)

By using the entropy of the two probabilities pΩ(s)α(~x) and pΛ(s)α(~x) , we can then

determine the influence of the sensing action by:

H(α(~x)) = −
[
pΩ(s)α(~x)(s)× ld(pΩ(s)α(~x)(s)) + pΛ(s)α(~x)(s)× ld(pΩ(s)α(~x)(s))

]
(2.4)

The second part of the equation takes the noise sensing actions are influenced by into

account. With pα(~x) specifying the probability of the sensing action returning the

correct result, we can define the influence of the noise for a given diagnosis candidate

w as:

p(α(~x)|w) =

{
pα(~x), if α(~x) is consistent with w

1− pα(~x), if α(~x) is not consistent with w
(2.5)

Thus, the conditional entropy is given as:
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H(α(~x)|w) = −
[
p(α(~x)|w)× ld(p(α(~x)|w)) + p(¬α(~x)|w)× ld(p(¬α(~x)|w))

]
(2.6)

The conditional entropy of all diagnosis candidates can be combined to model the

influence of sensor noise.

H(α(~x)|W (s)) =
∑

w∈W (s)

(pw ×H(α(~x|w)) (2.7)

Figure 2.1: An algorithm to calculate the sens-
ing action with the highest information gain
(Mühlbacher and Steinbauer, 2014).

In order to be able to select

the sensing information with

the highest information gain,

we need to determine the set

of executable sensing actions

for the current set of diagnosis

candidates W (s). Mühlbacher

and Steinbauer (2014) pro-

posed two different algorithms

to calculate the action with the

highest information gain.

The first algorithm calculates

all grounded, executable sens-

ing actions and calculates

I(α(~x)) for each of them. The

action with the highest value is

then returned. This algorithm

assumes a finite number of do-

main object and thus a finite

number of grounded sensing ac-

tions. For a infinite number of domain objects, this algorithm is undecidable.

The second algorithm, shown in Figure 2.1, first calculates all possible splittings of

the set W (s). For every possible split, the information gain is calculated and the

splittings are added into a queue, ordered by the information gain. Note, that it is

possible to calculate the mutual information without a grounded sensing action, if

the splitting is given. The algorithm then removes the first splitting from the pool

and searches for a grounded sensing action that will result in the given splitting of

the diagnosis candidates. The search for a grounded sensing action can be done by

using a first order theorem prover. If no grounding can be found, the next splitting

will be examined. It is shown that the second algorithm is sound and complete if the
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search for a grounded action is sound and complete (Mühlbacher and Steinbauer,

2014).

Knowledge about the probabilities of hardware state changes can be used to calculate

the probability pw of a diagnosis candidate w. Thus, we can use the knowledge of an

engineer about the hardware platform to enhance the selection of sensing actions and

therefore end up faster with the correct diagnosis. Since we assume a finite number

of objects in our domain, we will use the first algorithm in this thesis.

2.3 Platform Model

Often, the additional constraints that are introduced by the hardware platform an

agent is operating on, are ignored during the plan generation. On the one hand

this is rational, since taking all constraints into account increases the problem size

significantly. So, in terms of planning, it is desirable to plan with a platform-

independent domain description. On the other hand, the platform may require

additional effort and preparation before executing the desired actions.

Figure 2.2: A very basic component model

In Hofmann et al. (2018b), a method

for separating planning from the con-

straints that are enforced by the

hardware platform was introduced.

An agent would generate an abstract

plan and adapt it by using a platform

model, so it is executable on the hard-

ware platform. One method for mod-

elling components of the hardware

platform, as proposed in Hofmann

et al. (2018b), uses finite state ma-

chines with multiple types of edges. We can distinguish between two main types of

edges: edges that are triggered by actions that are executable by the agent (e.g. a

calibration action) and edges that represent exogenous actions not in control of the

agent. Now, constraints can be defined for all actions that depend on this component

of the hardware. A very basic example for a component model is shown in Figure 2.2.

An action that depends on this component could have the constraint, that the

component has to be in the Calibrated state. When converting the abstract plan

into an executable one, the calibrate() action then has to be inserted somewhere

into the sequence before the execution of the action, that depends on the hardware

component. We assume a system that has such a hardware platform model for any

reason. However, we do not use the proposed plan transformation in this thesis.

Instead, we only want to reuse existing hardware models to improve the diagnosis
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process. This will be done by integrating the possible hardware state changes and

the way an action behaves when executed with faulty hardware into the diagnosis

candidate generation.

2.4 Planning

In general, classical planning is a graph search problem, where nodes are world states

and edges are the actions that lead from one world state to another. A planning

problem is then the task of finding a path from the initial state to a state in which a

goal condition holds true. To make the graph search more efficient, most of these

planners make use of some sort of heuristic. Most of them require a description of the

domain and available actions to correctly determine a sequence of actions, that lead

to a state in which some goal condition holds true. There exist a lot of extensions

to this basic task, such as finding an optimal solution for a given metric, adding a

temporal aspect to actions or including numeric fluents (Fox and Long, 2003).

We want to encode the diagnosis problems as planning problems and use existing

planners to solve them in order to profit from the performance benefits that well

researched planners have in comparison to searching the complete state space.

2.4.1 PDDL

One formal definition language for planning problems is the Planning Domain

Definition Language (PDDL) (McDermott et al., 1998), which was first introduced by

the Planning Competition Committee of the International Conference on Artificial

Intelligence Planning Systems (AIPS-98). There exist not one single PDDL language,

but different versions with different expressibility.

Among other features, it relies on the representation formalism as defined in the

STRIPS formalism (Fikes and Nilsson, 1971). According to the STRIPS formalism,

a world model is represented as a set of propositions and makes the closed world

assumption. Thus, all propositions not in the set of the world model are assumed

to be false. Actions consist of parameters, a precondition and an effect, where

the precondition and the effect are defined by a set of propositions, interpreted as

conjunctions.

A planning problem defined using PDDL is consists of two parts: the domain

description and the problem description.

Domain description: The domain description defines all available types, constants,

predicates and actions. Also, the domain defines the syntactic features used in this

PDDL instance. For example, in order to use conditional effects, the requirement
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:conditional-effects has to be added. The features used in a PDDL instance

constraints applicable planning algorithms and influence the complexity of the

described problem. Typically, the domain is defined once and then multiple problems

can be defined for this domain. An action definition consists of a set of parameters,

a precondition and a conjunction of literals that represents the effect of the action,

as shown as an example in Listing 2.1. However, the effect and precondition can

include several other expressions, such as disjunctive preconditions, quantifier and

existential operators or equality conditions, depending on the defined requirements

of the domain. Note, that disjunctive effects are not allowed. By this, preconditions

are typically more expressive than effects.

Problem description: The problem description consists of an initial state that

represents an instance of the world as defined in the domain description. The initial

situation is defined by a set of literals believed to be true. All unmentioned predicates

are assumed to be false. Additionally, the problem file defines all available objects,

which are instances of the types defined in the domain description. Finally, the

problem description contains a goal. A goal is defined by a precondition formula that

has to hold true in a state of the world in order for this state to be a goal state.

1 (:action move

2 :parameters (?r- robot ?from - location

3 ?to - location)

4 :precondition (at ?r ?from)

5 :effect (and (not (at ?r ?from))

6 (at ?r ?to))

7 )

8 )

Listing 2.1: PDDL definition of a move action

PDDL2.1 PDDL2.1 adds numeric fluents and expressions as well as durative actions

and plan metrics (Fox and Long, 2003). Therefore, PDDL2.1 allows temporal plan-

ning. A numeric fluent can be increased as part of an action effect, e.g. (increase

(total-cost) 1). In order to be able to plan cost optimal, a metric can be defined

as part of the problem definition. Any planner that supports cost-optimal planning

will then search for a plan that optimizes the metric. This extension of PDDL will

be used in this thesis to encode the preference for explanations with less faults. By

applying action costs to exogenous actions, that represent a hardware failure, we

can force a planner to search for explanations with a minimum number of hardware

failures.

PDDL+ PDDL+ extents PDDL with a continuous aspect, removing the restriction

of discrete changes of PDDL (Fox and Long, 2002). PDDL+ allows a mix of discrete
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and continuous change. Additionally, predictions of exogenous events can be modelled.

PDDL+ problems can be solved using Satisfiability Modulo Theories (SMT) solvers.

This thesis will not make use of this extension.

2.4.2 Fast Downward

Fast Downward is a heuristic PDDL planner framework, that supports multiple

search methods. Unlike other PDDL planners, Fast Downward translates the PDDL

description of the planning problem into mutli-valued planning tasks, which are

used to compute its heuristic function (Helmert, 2006). This is done by creating

causal graphs, that represent the causal dependencies fluents have on each other.

For example the fluent (holding R1 P), that represents a robot R1 holding a

certain product P, depends on the robot and the product being in the same position.

Therefore, a causal dependency between the holding and the fluent (at R1 ...)

can be inferred. By using the causal graph, Fast Downward can make use of the

implicit constraints that are introduced by the propositional planning task. The

actual planning process then can use different search algorithms on this decomposed

planning task, such as LAMA (Richter and Westphal, 2010) or Greedy (Helmert,

2006). Fast Downward supports numerical fluents and temporal planning as well as

some features introduced by PDDL3 and PDDL3.1.

2.4.3 Top-K planning

One subset of planning problems, that are solvable by the Fast Downward framework,

are cost-optimal planning problems. This is the task of not finding only one possible

plan for a given planning problem but also minimizing the cost of the found plan.

By adding costs to actions and therefore to generated plans, it is possible to encode

preferences or likelihoods into the plan generation. However, in many cases we are

not interested in a single optimal plan, but in the k best plans. For this, top-k

planning can be used, which is the problem of finding a set of plans of size k while

guaranteeing that no plan better than any member in the set is left out. Often, this

is useful to evaluate possible optimal plans with any criteria that is too complicated

to encode into the planning problem directly. We want to use such a top-k planner

to generate a set of hypotheses for a given diagnosis problem. Sohrabi et al. (2016)

proposed using the k-shortest path algorithm of Aljazzar and Leue (2011) to address

this problem in their K∗ algorithm.

K∗ uses any heuristic search to find a single optimal plan. During the heuristic search,

a portion of the search graph G gets constructed. After finding an optimal solution,

the search graph is expanded even more, until the number of additionally expanded

nodes reaches a certain percentage of the generated search graph. Sohrabi et al.
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(2016) suggested continuing the heuristic search until the search graph is increased

by 20% after finding the optimal solution. Afterwards, the shortest path tree T

to the goal node is generated, by applying Dijkstra’s algorithm on the expanded

search graph G. By removing all edges in the shortest path tree from G, G− T only

consists of sidetrack edges, that can be assigned a detour cost for taking that edge.

Based on this sidetrack graph, a path graph P (G) can be constructed, in which nodes

represent sidetrack edges. By applying Dijkstra’s algorithm again on the path graph

P (G), it is possible to extract the k shortest paths. The worst case complexity of the

k-shortest path algorithm for a given graph G with n nodes and m edges is given as

O(m+n log n+kn). The bottleneck of the algorithm is the generation of the complete

search graph G. K∗ deals with this challenge by using a heuristic-guided search

like A∗ to expand only interesting portions of the search graph. By dynamically

continuing the A∗ search to further expand the search graph, if not enough shortest

paths were found, the K∗ algorithm is able to efficiently generate the search graph

and therefore perform better than the k-shortest path algorithm of Aljazzar and

Leue (2011). All in all, the complexity of finding the top-k plans is comparable to

finding a single optimal plan, as stated in Sohrabi et al. (2016).

One disadvantage of the K∗ planning algorithm, is that all plans are found almost

simultaneously (Sohrabi et al., 2016). Therefore, it takes a long time until the first

solution is reported. Also, the implementation of the K∗ algorithm was done in a

planner that supports the Stream Process Planning Language (SPPL) and not in

PDDL. Recently, Katz et al. (2018) presented an iterative version of the K∗ algorithm,

that is implemented as a search engine of the Fast Downward framework, therefore

supporting PDDL problems.

2.5 RoboCup Logistics League

The RoboCup Logistics League (RCLL) is a robotics competition that aims to support

and evaluate research in the discipline of dynamic robotic-based production and to

provide a regular competitive testbed (Niemueller et al., 2016a). The RCLL is part of

the RoboCup (Kitano et al., 1997), an international initiative to support intelligent

robotic research. The RCLL challenges the participating teams to develop a team

of robots, that operates a smart factory and fulfils custom and dynamic orders. To

accomplish this task, the robot team has to plan and execute the logistic flow of the

factory by manually operating the machines. Mobile robotics itself raises a lot of

challenges such as path planning, navigation and collision avoidance.

In the last years, two teams had to play on the same field, with a set of machines

assigned to each team. A centralized refbox keeps track of the achieved points and

generates random product orders during the game. Product orders have different
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Figure 2.3: Production steps needed for a product of the highest complexity
(Niemueller et al., 2015)

types of complexities, where a rising complexity implies a rising number of machine

interactions needed and therefore increased risk and time. Generally, machine is op-

erated by placing a intermediate product into the input side, instructing the machine

by sending a message and then picking up the processed product from the output side.

Figure 2.4: The
robotino, as used by
the Carologistics team
in 2019 (Hofmann
et al., 2019)

Each team can use six machines of four different types. The

base station is the starting point of all available products,

since it dispenses the base segment. There exist three differ-

ent colors of bases and a product consists of one base, one

cap and between zero and three rings. Caps can be mounted

at the cap station. To mount a cap, the cap station has to

be fed a cap carrier, from which it can retrieve and buffer

the cap. There are two cap stations on the field, responsible

for two different cap colors. Therefore, in order to produce

a product of the lowest complexity, a cap has to be buffered

at a cap station, the empty cap carrier has to be removed

from the cap station, a base has to be retrieved from the

base station and the buffered cap has to be mounted on

the base at the cap station. Higher complexity products

require the use of the two ring stations. Each ring station

can mount two different ring colors. Additionally, bases and

cap carriers can be filled into the ring stations and have

to be used to pay for certain ring colors. For example, a

ring station can mount a orange ring for the cost of one.

Therefore, before mounting the orange ring, at least one

base or cap carrier has to be filled into the ring station.

The prices for each ring color are decided randomly by the

refbox at the begin of each game. After mounting the cap onto a product, the final

product has to be placed into the delivery station. The points of the product are only

awarded after a successful delivery. An example for the steps needed for a product

of the highest complexity is shown in Figure 2.3.
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After a game has started, the robots have to deal with failures on their own in order to

successfully finish the game and produce as many products as possible. All robots are

built based of the same hardware platform: the Robotino platform by Festo Didactic.

These platforms consist of omnidirectional locomotion, infrared distance sensors

and interfaces for additional sensory. Each team may attach additional hardware,

such as laser range sensors, webcams and grippers. For example, the robots of the

Carologistics team are equipped with two Sick laser sensors, an additional laptop,

a webcam, a depth camera and 3 linear drives that hold a parallel gripper. So the

complete system consists of a lot of smaller components, which all have to operate

correctly.

The RoboCup Logistics League is designed as a benchmark domain for planning,

plan execution and mobile robotics. A team of robots has to be coordinated, while

having to deal with the robots of the opponent team at the same time. Therefore,

the RCLL domain it is cooperative and competitive. Actions are non-deterministic,

since grasping and putting can fail at any time and collisions may occur with enemy

robots. Also, the game evolves over time, since all actions have an influence on the

state of the machines. The world is dynamic, with many possible causes for changes

that the robot has no control over. All in all, the RCLL is a suitable benchmark

domain for robotic planning and plan-execution and will be used for evaluating this

diagnosis approach. This will be done by evaluating the ability of the robots to

continue the production after hardware failures in a simulation of RCLL games.

Figure 2.5: Simulated RCLL game in Gazebo

In order to effectively

evaluate approaches

in the RCLL domain,

a simulation of the

RCLL was developed,

using the open source

simulation framework

Gazebo, (Koenig and

Howard, 2004). The

RCLL simulation, as

presented in Niemueller

et al. (2016b), aims

for simulating com-

plete RCLL games, support multi-robot strategy evaluation and simulate sensor data

with optional noise. By this, we can closely resemble a realistic execution of actions

in the simulated environment. Therefore, the simulation offers the possibility of

evaluating agent and strategy developments close to reality without having to run

real games.
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2.6 Fawkes

Fawkes (Niemueller et al., 2010) is an open-source robotic framework used by the

Carologistics team in the RoboCup Logistics League. It consists of several compo-

nents, that are connected via well-defined interfaces, called blackboards (Niemueller

et al., 2016c). The main structure, as used by the Carologistics team, consists of

three layers, as shown in Figure 2.6. The lowest layer includes all components that

deal with hardware, sensory and data analysis. The second layer combines several

low level components to a more abstract behaviour engine. The agent system at the

top is responsible for decision making, planning and cooperation. Actions executed

by the agent are realised by the behaviour engine.

Figure 2.6: The three layers of fawkes
(Niemueller et al., 2013)

Component-Based: Fawkes is a

component-based software frame-

work, which means that it con-

sists of several units, combined by

well-defined interfaces. The Fawkes

framework offers dynamic loading of

components, so-called plugins. It al-

ready comes with a huge variety of

plugins that cover a wide range of

functionalities from infrastructure to

functional components, such as lo-

calization, perception or navigation.

All these plugins are able to communicate by using well-defined interfaces, so called

blackboards. Plugins are loaded in separate POSIX threads, which are managed by

Fawkes. A thread can run in two different modes: wait-for-wakeup and continuous.

A wait-for-wakeup thread is blocked until it is waken up, runs one iteration and then

blocks again, whereas a continuous thread runs continously in the background. All

threads are hooked into the main loop of Fawkes.The main loop is handled by the

framework in a sense-think-act cycle. By doing so, it is guaranteed in which order

and with what input all threads execute one iteration. A thread can be registered for

a stage and will be woken up everytime the main loop reaches that stage. Especially

in multi-core systems, Fawkes efficiently synchronizes multiple threads running in

parallel, exploiting the systems resources as good as possible.

Blackboard: Blackboards are a hybrid blackboard/messaging system with XML-

defined interfaces. Normally, each component acts as a writer for a specific blackboard,

through which it shares its data with other components. These information are avail-

able for all interested components by reading from the blackboard. Other components

can instruct the writing component or request data by sending messages.

Behaviour engine: The Lua-based behaviour engine combines several low-level
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components to more abstract skills (Niemueller et al., 2009). It seperates the low-level

sensor processing and control software from the agent. An individual behaviour -

called skill - is implemented as a hybrid state machine (HSM). The nodes of the HSM

represent the state of the execution and monitor the behaviour. Edges determine

jump conditions to other states, implemented as boolean functions. A skill is finished

if one of its final nodes is reached. Using the blackboard interfaces, a skill can

monitor the data published by some low-level component and can send messages to

instruct a low-level component. A table of variables can hold information in the scope

of the skill, like numeric values of object positions. Skills are implemented using the

extensible scripting language Lua. It is possible to have a hierarchy of skills, since a

skill can call a subskill in any of its states. Therefore, it is possible to implement

skills for basic behaviour and combine them into more complex behaviour.

For example, to grip from a machine, we need to make use of a gripper component, a

vision component for detecting the workpiece and a laser component for detecting

the machine. A skill can make local decisions to scope with basic failures and call

subskills, and therefore act as an abstraction of basic functionalities. The skills are

then used by the high-level agent.

2.7 CLIPS Executive

CLIPS is a rule-based production system (Wygant, 1989). The CLIPS rules engine

consists of facts, functions and rules. Facts are pieces of information in a fact

base. Rules are the core of the CLIPS rule engine. They consist of a left-hand side

antecedent (LHS) and a right-hand side (RHS) consequent. The LHS consist of a set

of conditions, typically patterns that formulate restrictions on which facts satisfy the

conditions. If there exist a fact in the fact base for every pattern of the condition, the

LHS is satisfied and the consequent is added to the agenda. Each consequent in the

agenda is then executed after another. A consequent can assert, retract and modify

facts of the fact base. Additional procedural knowledge is encoded in functions, that

can be executed as part of a consequent. Functions can be implemented in other

languages such as C++ or PYTHON and therefore can be used to communicate with

components of the framework the CLIPS rule engine is integrated in.

The CLIPS Executive implements a goal lifecylce, as proposed in Roberts et al.

(2014) and Aha (2018), shown in Figure 2.7. Currently, the CLIPS Executive is used

by the Carologistics team as a high-level agent in the fawkes framework (Niemueller

et al., 2019). The CLIPS Executive consists of a domain model, an execution model

and stores a world model as part of the fact base (Niemueller et al., 2019). The

domain model defines all available operators and predicates, the execution model

holds all execution relevant information, such as sensed predicates and exogenous
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actions and the world model holds all information about the world at a certain point

of time. Each piece of information about the world is represented as a predicate,

such as (domain-fact (name at) (param-values R1 C-CS1)), representing that

the robot R1 is currently believed to be at the machine C-CS1.

2.7.1 Goal Lifecycle

Figure 2.7: The goal life cycle (Niemueller
et al., 2019)

Goals describe objectives which are

desirable to pursue. The CLIPS Ex-

ecutive uses goals as the core data

structure to organize its decision

making process. There exist two

types of goals: achieve and maintain

goals. Achieve goals are meant to

achieve a certain objective are main-

tain goals are used to maintain some

condition or state. A goal also main-

tains a set of parameters, meta infor-

mation and the resources needed to

achieve the assigned objective.

Based on the world model, the

CLIPS Executive formulates all

reachable goals and follows the goal

lifecycle, defined in Hofmann et al.

(2018a). The most desirable goal gets

selected and expanded by generating

fitting action sequences that will lead

to the goal objective based on the

current state of the world, as rep-

resented in the world model. The

expanded goal then commits to one

of the generated plans and acquires

all resources needed for the execution of the committed plan. When all resources

are acquired, the goal finally gets dispatched. The action executer then takes care of

executing the corresponding plan.

Each plan action is defined in a PDDL domain and contains of a set of preconditions,

that have to hold true before executing, and a set of effects that are applied to

the world model after executing the action. Most of these actions are tied to a

middle-level skill of the behaviour engine, that is triggered upon the start of the
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action execution. The plan action then follows the action execution cycle, which will

be explained later.

After finishing the committed plan, regardless whether it failed or not, the goal

switches to an evaluation state, in which the CLIPS Executive can reason about

the success and outcome of the goal. Currently, at this point some goal-specific

hard-coded evaluation rules are in place, that updates the world model after a

failure. This work will replace this procedure with an automated diagnosis procedure.

The ability to correctly identify the cause of the failure in this evaluation step and

update the world model to correctly represent the real world is particularly useful

when taking the goal lifecyle into account. After finishing the previous goal, the

CLIPS Executive just starts with reformulating all goals again. However, with the

information about the cause of the failure we might be able to recover from the

failure and repair the previously tried goal instead of dropping it, losing the time

and resources already invested. Thus, the ability to correctly diagnose the cause of

failures and reasoning about the effects a failure have onto the world will result in a

more robust and successful CLIPS Executive.

2.7.2 Plan Action Cycle

Figure 2.8: The action execution life cycle
(Niemueller et al., 2018)

The CLIPS Executive uses a plan

action cycle to control the execu-

tion of plan actions, as presented

in Hofmann et al. (2018a) and

shown in Figure 2.8. As soon as

all grounded preconditions of the

selected action are verified to hold

true in the current state of the

world model, the action is pend-

ing. The executor then starts the

corresponding skill of the action

and the action switches to waiting,

until the skill reported the start

of the execution.

The plan-action stays running un-

til the skill reports the end of the

execution, together with informa-

tion about the success of the ex-

ecution. Depending on the out-

come of the skill, the effects are

applied to the world model and
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the agent continues with the next plan action. Niemueller et al. (2018) introduced

an additional type of effects: sensed effects. These are effects, that can be directly

observed in the world and the action waits for these effects to come into place.

However, these sensed effects are only part of the execution model and are treated

as normal effects regarding the PDDL definition.

2.7.3 Multi-agent Coordination

In the RCLL domain, three robots with separate instances of the CLIPS Executive

are used, operating simultaneously. Instead of cooperating to fulfill a shared set of

goals, the CLIPS Executive follows the negotiated distributed planning approach,

where each instance pursues its own goals while coordinating with the other instances

(Durfee et al., 1999). Most importantly, since all instances operate in the same world,

any changes to the world model introduced by one instance of the CLIPS Executive

has to be communicated to all other instances. This is done by using a shared world

model, implemented in a distributed database with local instances on all CLIPS

Executive instances (Niemueller et al., 2012). As soon as one instance updates a

fact that is marked for syncing, it is updated in all instances of the distributed

database.

To coordinate goal execution and prohibit multiple instances pursuing the same goal,

resource locks are used. As mentioned in Subsection 2.7.1, goals can have resources

assigned that determine which resources in the actual world are needed or going to

be changed if an instance decides to execute the goal. By using mutex facts, that are

owned by an instance and synced using the distributed database, it is guaranteed

that only one instance can change a resource. Situations, that needs additional

coordination between robots, e.g. prohibiting that two robots want to drive to the

same location, can be resolved by temporarily locking the resource. This is done by

using specific lock and unlock actions as part of the plans.



3 Related Work

In this chapter, we will present related work to our approach. Starting with different

diagnosis approaches, we will then present related work to the active diagnosis and

to solving diagnosis by planning.

3.1 Consistency-based Diagnosis

Consistency-based diagnosis was first introduced in Reiter (1987). Based on a

description of the normal behaviour of a system and an observation that conflicts

with the described behaviour, faulty components are identified. A consistency-based

diagnosis then consists of a set of components of the system that behaves abnormally.

Mühlbacher and Steinbauer (2016a) viewed executed actions as components of the

system. The ultimate goal of their approach is to maintain a consistent belief about

the world state. After an observation, that does not comply with the belief expected

after the execution of the history, abnormal actions are identified and used to update

the belief. The identification is made by using conflict-driven search to calculate

diagnosis hypotheses. All fluents influenced by the failed actions are then marked as

unknown, which results in a consistent but reduced belief of the world state. Our

approach aims for maintaining a consistent belief as well, but by using multiple fault

modes of actions we want to distinguish between the different ways an action can

fail. Therefore, we end up with a more detailed belief, which enables the agent to

make more informed decisions afterwards.

A similar approach is presented by Witteveen et al. (2005), in which actions are

viewed as objects of a system, that can have several health modes. Based on an

observation at any step of a plan execution, the executed plan actions are assigned a

health mode. Based on a health mode assigned to an action scheme, they predict the

outcome of future instances of this action and therefore use diagnosis to predict the

outcome of plans. However, any fluent that depends on an action, that was diagnosed

as abnormal, gets marked as unknown. This generally leads to a loss of information.

Witteveen et al. (2005) assumed, that a failure of an action is not a single event, but

enables us to predict the outcome of other actions as well. They assumed that a

failure of an action gives information about other instances of the same action type,

already assuming an underlying cause. However, they ignore the fact, that the cause
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of a failure of one type of action can have an effect of a completely different type of

actions as well, if they are influenced by the underlying cause as well.

3.2 Abduction-based Diagnosis

Abduction methods are also suitable for generating diagnoses, as stated in Poole

(1989b). Abduction reasoning represents a form of logic inference, that seeks for

the most likely explanation for a given observation. Poole (1989a) pointed out, that

abduction can purely be used on a complete description of possible faults and their

symptoms. Abductive diagnosis utilizes an axiomatisation how symptoms follow

from causes. A diagnosis generated with abduction on a set of observed symptoms

then consists of the minimal set of fault assumptions that explain the observations.

Our approach resembles abductive diagnosing, since we search for hardware state

changes that result in an adapted consistent history. However, rather than directly

axiomatising the effects of a hardware state change, we define the behaviour of

actions for given hardware changes. The description of the action variations will

then be used to explain the observation.

3.3 History-based Diagnosis

Mcllraith (1999) introduced an approach, that searched for an explanation for a

faulty component. This was done by implementing a consistency-based diagnosis,

which conjectured actions to explain the observed fail. Our approach not only

marks components as faulty, it actively maintained and altered a history of actions.

Thus, this approach is capable of dealing with exogenous events that have to be

integrated into an existing history. Based on this approach, Gspandl et al. (2011)

proposed a method to revise a history of actions in context of an observation by

replacing actions with a fitting faulty version or by integrating exogenous actions.

However, their approach requires a description of all possible ways each action can fail.

Diagnosis hypotheses are then generated by defining a search space over all possible

replacements and insertions. Traversing the search space and finding adaptations

,that result in a consistent belief, is a time-consuming task due to the extensive state

space. Iwan (2002) introduced the use of history-based diagnosis templates in order

to cope with the problem, that there are multiple, similar diagnosis candidates that

only differs in the grounding of parameters. In contrast to our approach, the search

for history-based diagnosis candidates ignores the possible underlying root causes for

a failure and may even produce impossible explanations by ignoring dependencies

between actions. For example if an action is replaced by a faulty alternative and

depends on a certain component of the hardware, we know that any other type of
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action that also depends on this particular component is also likely to fail in some

way. The knowledge about these types of dependencies is ignored in the approaches

mentioned above.

3.4 Other Approaches

There are a lot of different approaches, that use diagnostic methods for a wide

range of tasks. Roos (2018) uses reinforcement learning for learning the reliability of

robots in a multi-robot environment. In de Jonge and Roos (2004), a model-based

diagnosis approach is used to identify possible conflicts in future plans, where agents

are operating simultaneously on shared resources. Another interesting diagnosis

approach, that monitors the outcome of actions while executing them, is presented

in Eiter et al. (2004). Upon detecting a state that does not lead to a goal state,

their diagnosis approach searches for the last state in which a goal could be reached.

However, this is based on the assumption that the agent has complete knowledge

about the state of the system. This is nothing we want to assume, since a robot in a

real world scenario may not be able to sense all aspects of its surroundings.

Another approach, closely related to diagnosis, is explanation generation. For given

observations, explanation generation aims for finding sequences of actions and events

that explain the observations. Approaches to explanation generation, like Bridewell

and Langley (2011) or Molineaux and Aha (2015), differentiate events from actions

and do not revisit knowledge about executed actions. Also, they assume that

only partial states are observed instead of actions, which hugely deviates from our

approach. In history-based diagnosis generation, the only secured knowledge is about

the intentions of which actions should have been executed. The resulting state is

only assumed, based on the assumed effects of an action.

3.5 Active Diagnosis

As mentioned above, we will use the approach to active diagnosis as proposed by

Mühlbacher and Steinbauer (2014). They developed a framework for selecting sensing

actions with the highest information gain on a set of diagnosis candidates, with the

goal to narrow the set of possible diagnosis hypotheses. However, there exist some

other, related approaches. Baral et al. (2000) also diagnoses dynamic systems by

generating sensing plans. However, they represent the static behaviour of a system

by static constraints and monitors the system by reading sensor values continuously.

If a sensor reading is contradicting the static constraints, events that explain the

sensor reading are searched. If more than one diagnosis is found, their approach

generates a conditional plan with sensing actions to find the real diagnosis. Another
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approach for active diagnosis is presented in Kuhn et al. (2008). They proposed the

integration of diagnosis goals into production goals based on the assumption that

there exist multiple ways of achieving production goals. Their concept of pervasive

diagnosis then proposes the selection of the production strategy with the highest

diagnosis information gain.

3.6 Diagnosis as Planning

As mentioned above, Gspandl et al. (2011) uses history-based diagnosis for main-

taining a belief, by traversing a search space defined by all possible insertions and

replacements for a given history of executed actions. This method closely resembles

traditional planning methods, that aims for conjecturing actions until a goal state

is reached. Sohrabi et al. (2010) showed the connection between diagnosis and

planning in detail. Based on previous works on temporally extended goals (Baier

and McIlraith, 2006) and temporally extended preferences in Baier et al. (2009),

Sohrabi et al. (2010) uses a description of a diagnosis problem in situation calculus

and transforms the formalized diagnosis problem into a PDDL planning problem.

The history of executed actions and the conflicting observation are encoded as a

temporal extended goal. However, the history is not directly encoded as action types.

Instead, the resulting state after executing an action is encoded in special predicates.

Also, in temporal extended goals the sequence of observations does not necessarily

need to be strictly ordered, in contrast to the strictly order sequence of actions in

our history. Therefore, temporal extended goals are not needed for implementing

history-based diagnosis approaches.
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The goal of this thesis is to utilize a model of the platform the agent operates on

for an improved guided history-based diagnosis generation. Two of the drawbacks

of history-based diagnosis are the manual creation of all possible action variations

and the huge search space, that has to be traversed while searching for valid history

adaptations. The primary contribution of this thesis is to extent the existing history-

based diagnosis approach by reasoning about possible underlying hardware failures.

Additionally, by using platform models we want to guide the engineers through the

generation of action variations and therefore enforce that all action variations are

properly defined for a successful diagnosis generation. Assuming, that a majority of

failures are caused by the hardware platform, we expect the guided action variation

generation to be sufficient for the most diagnosis tasks and enable the agent to make

more informed decisions after a hardware failure.

After executing an action sequence and making an observation that contradicts the

expected world state, we want to use the history of executed actions and the history

of state transitions of the component models to generate alternated histories that

result in consistent beliefs. This is going to be done by encoding the constraints

given by the platform models and the sequence of executed actions into a PDDL

domain and solving it using planning algorithms. If we end up with multiple diagnosis

candidates, we want to perform active diagnosis to sense for literals, that will rule

out diagnosis candidates. Ultimately, we want to improve the CLIPS Executive in

terms of recovery after a failure by enabling it to properly evaluate the reasons for a

failed goal. A sketch of the diagnosis pipeline in the goal evaluation step is shown in

Figure 4.1.

Figure 4.1: The diagnosis and recovery pipeline
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Figure 4.2: Two components with constraints for a move action. Left the move
base, right the localization component

4.1 Generating Action Variations

Existing consistency-based diagnosis-approaches, like Mühlbacher and Steinbauer

(2014), identify failed actions and investigate the influence of these actions on the

world state. All fluents, that are directly or indirectly influenced by failed action,

are then marked as unknown since the effect of a failed action is unknown. This

approach is not really applicable in the CLIPS Executive, because there exists no

way of modelling, that a fact is uncertain. However, by identifying the objects, that

are influenced and their properties we can represent uncertainty about the property

of an object by removing all facts describing this property.

Nevertheless, a single failed action may draw the outcome of subsequent actions

unpredictable as well, which will result in a cascading loss of information. Of course,

this will result in a consistent world model but will also have a huge negative impact

on the possibilities of the agent to continue the production. For example, after

a failed grabbing action we would have to mark the position of the workpiece we

wanted to grab as unknown. Thus, the time and effort that was used to produce the

workpiece would be lost, since the workpiece could no longer be processed due to the

missing information about its location. To prohibit this, we want to reason about

the different ways actions can fail.

In history-based diagnosis we are not merely interested in which actions may failed,

but in which way exactly. By reasoning about the effects a failed action can have,

the history-based diagnosis procedure will result in a refined world state with a lot

more information than by using a consistency-based approach. In order to identify

the way an action failed and what effects the failure has onto the world state, the

diagnosis procedure requires a definition of all possible action variations.

By assuming, that the majority of action failures are caused by hardware errors
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or wrong assumptions about the state of a platform component, we expect the

platform model to be a sufficient guideline for the creation of action variations. As

described before, we model the various components of the hardware platform the

agent is operating on as finite state machines with multiple kinds of transitions.

A component model may contain exogenous transitions, that represent component

state changes, which can happen without being actively triggered by the agent.

We assume, that most action failures are caused by a component unknowingly

changing the state by following such an exogenous transition. Therefore, we require

a description about the effect an action will have when executed with the component

being in an exogenously reachable state. Exogenously reachable in this context stands

for: reachable by following only exogenous transactions. We then need to take all

component models into account, that enforce a state constraint onto an action and

define action variations for exogenous reachable states in all of these component

models.

Note, that we just have to define action variations for adjacent states, that can

change unrecognised without failing the actions. For example, an action, that aligns

the robot to some machine using laser scanners, needs the laser scanner component

in a calibrated state. However, if the laser scanner got de-calibrated unnoticed by

the agent, the action would succeed nevertheless. Therefore, we need to define an

action variation of the alignment action for the laser scanner being uncalibrated.

Then again, if the laser scanner would have turned off before or while executing the

action, the action would fail without affecting the world, because it recognizes the

missing laser data. Therefore, we do not need an action variation of the alignment

action for the laser scanner component being turned off. By following these design

guidelines, we end up with all necessary action variations for a successful diagnosis

of hardware caused failures.

4.2 Formulating Diagnosis Problem in PDDL

Planning algorithms are a well researched topic and we want to utilize the performance

benefits offered by well-known planning algorithms in comparison to simply traversing

the search space. Thus, we want to encode the diagnosis problem as a PDDL problem

and use a top-k planner to generate k diagnosis candidates.

As mentioned in in Subsection 2.4.1, a PDDL problem consists of several components:

predicates, types and operators, which are part of the PDDL domain description, and

objects, the initial world state and the goal, which are part of the PDDL problem

description.

In order to diagnose a history of executed actions, we want to ensure that the

planner only generates alternated versions of the executed history. In the following
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sections the generation of the PDDL diagnosis problem will be described. This

includes enforcing the generated plan to be an alternated version of the history,

the integration of the hardware component constraints and the integration of the

component model state transitions. Afterwards, we introduce the creation of a

diagnosis problem description.

4.2.1 Domain Description

Typically, the PDDL domain description is created once and then reused for different

problems. We use the action history to dynamically adapt the domain description

in such a way, that the generated plan is an adapted version of the action sequence.

Therefore, we have to adapt the domain to each diagnoses problem separately. In

the following sections, the enforcement of the history is described as wells as the

integration of the hardware component state changes and the restrictions onto the

actions.

History Enforcement

1 (:action order_i

2 :parameter()

3 :precondition (and (last-ACT_i PARAM_i)

4 (count ACT_i COUNT))

5 :effect (and (not (last-ACT_i PARAM_i))

6 (next-ACT_i+1 PARAM_i+1)

7 (not (count ACT_i COUNT))

8 (count ACT_i COUNT+1)

9 )

10 )

Listing 4.1: Order action template

To force the planner to only create plans, that are variations of the executed history,

we introduce a new type of order action, as shown exemplarily in Listing 4.2 for a grab

action that succeeded a move action. For a given action sequence h = {a1, · · · , an},
for each i ∈ {0, · · · , n} an action orderi is defined as shown in Listing 4.1.

• ACT i is replaced with the action type of ai and ACT i+1 with the action type

of ai+1.

• PARAM i is replaced with parameters of ai. The same applies to PARAM i+1.
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In a similar way, ACT 0 is replaced with BEGIN, for which (last-BEGIN) is true

initially and ACT n+1 is replaced with FINISHED, for which (next-FINISHED) is

part of the goal condition. Additionally, a new precondition and a new effect is

added to each action and its variations, as shown exemplarily for the move action in

Listing 4.3.

1 (:action order_1

2 :parameter()

3 :precondition (and (last-move R1 C-BS C-CS1)

4 (count MOVE ONE))

5 :effect (and (not (last-move R1 C-BS C-CS1))

6 (next-grab R1 WP1 C-CS1)

7 (not (count MOVE ONE))

8 (count MOVE TWO)

9 )

10 )

Listing 4.2: Grounded order action

1 (:action move

2 :parameter(?r - robot , ?from - location ,

3 ?to - location)

4 :precondition (and (next-move ?r ?from ?to)

5 (at ?r ?from))

6 :effect (and (not (at ?r ?from))

7 (at ?r ?to)

8 (not (next-move ?r ?from ?to))

9 (last-move ?r ?from ?to))

10 )

11 )

Listing 4.3: A non-faulty action with order predicates.

To reach a goal state, in which (last-FINISH) has to be true, the planner has to

generate a sequence of of the form h′ = {o0, a
′
1, o1, · · · , a′n, on}, where oi is an order

action and a′j is either aj ∈ h or one of its faulty variations. Additional exogenous

actions are inserted at any place.

Determining which parameters have to be included in the (last-... and (next-...

predicates is an essential aspect when creating the action descriptions. Thus, we

have to differentiate between parameters that would have caused the action to fail in

the first place if changed, and parameters that may change unknowingly. Think of a

grip action executed at a certain machine after the robot moved to this machine.



30 4 Approach

Naturally, the action has a precondition that enforces the robot to be at the machine.

After a failure one possible sequence could be, that the move failed and the robot

ended up at a different machine. By enforcing the use of the old machine by adding

it to the parameters in the ordering predicates, this sequence would have never been

generated. Looking at the example, the grip action would succeed at any machine.

Therefore, the machine ID is not a parameter, that has to be enforced by the ordering

predicates. On the other hand, a move action on this particular platform may be

known to fail, if the robot is not at the position he believed since it is not possible to

generate a path to the target position. In this manner, we could enforce the starting

position of the robot as a parameter. An example is shown in Listing 4.4 for the

grab action as described above. The decision about which parameters have to be

enforced in the history depends on the specific implementation and execution of the

actions and can differ from platform to platform.

1 (:action grab

2 :parameter(?r - robot , ?wp - workpiece ?m -

machine)

3 :precondition (and (next-get ?r) (at ?r ?m)

4 (or (wp-at ?wp ?m)

5 (and (mps-side-free ?m)

6 (dummy-wp ?wp))

7 )

8 )

9 :effect (and (not (next-get ?r))

10 (last-get ?r)

11 (when (wp-at ?wp ?m)

12 (and (not (wp-at ?wp ?m))

13 (holding ?r ?wp))

14 )

15 )

16 )

Listing 4.4: A standard action with predicates distinguished between critical
preconditions and conditional effects

Additionally, we have to differentiate between two different types of preconditions:

hard preconditions and soft preconditions. A hard precondition has to be fulfilled

in order to be able to execute the action, independent of the effect it has. Soft

preconditions guard the effects an action can have, but do not lead to a failed

execution if not fulfilled. Therefore, a soft precondition could be unsatisfied while

executing the action without being noticed, whereas a hard precondition does lead

to a failed execution, if being unsatisfied.
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For example, a grip action would fail if the robot is not positioned at any machine.

Therefore, (at ?r ?m) is a hard precondition of grab. The grab action will only

result in a gripped workpiece, if there actually was a workpiece at the machine but

will not abort the execution if there is no workpiece. Thus, (wp-at ?wp ?m) is only

a soft precondition.

While generating diagnosis candidates we want to model all effects of an action,

even the undesired ones. In general, this requirement is true for all PDDL models.

However, in terms of planning, the distinction between desired and expected effects

are often not made. This is because in planning you mostly assume a successful

execution without failures or exogenous actions. Therefore, we potentially have to

adapt a given PDDL model of the domain to properly distinguish between expected

and desired behaviour. This is done by moving the soft preconditions to the effect as

conditions for conditional effects. However, we still have to restrict the grounding of

the parameters of the soft conditions that are not restricted by any other predicates

of the precondition. Sticking to the example from above, having the (wp-at ?wp ?m)

only as condition of an effect, the planner may ground ?wp with any workpiece that

is not located at the machine, ignoring any workpiece that actually is at the machine.

Thus, the effect of picking up the workpiece would not be applied. Therefore, we

add a disjunctive precondition, that is only used for grounding these parameters.

In our example we could achieve this by adding the precondition (or (wp-at ?wp

?m) (mps-side-free ?m)). The mps-side-free predicate is true if there is not

product at the input side of the machine. Following this precondition, ?wp will be

grounded with the workpiece that is at the machine, if there is one.

To prohibit the planner of generating grounded action instances with any object as

?wp we introduce a dummy object for which (dummy-wp ?wp) holds true. Thus, we

can adapt the disjunctive precondition to (or (wp-at ?wp ?m) (and (mps-side-

free ?m) (dummy-wp ?wp)), resulting in only one possible grounding if the machine

side is free.

By these adaptations of the domain description, the planner is forced to create a

plan, that contains every action or one of its variants of the given history exactly in

the order, they were executed.

Platform Constraints

Additionally to the history of executed actions, we want to keep track of the history

of component states. As mentioned in Chapter 2, actions can have constraints for

component models being in a certain state to be able to executable. By keeping track

of the component states during the execution of a sequence of actions, we can use

the history of component states to restrict the set of exogenous actions and action

variants to be considered during the planning process.
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Taking the two component models from Figure 4.2 as an example, we can adapt the

definition of the move action from Listing 4.3 to correctly represent the fact, that

the robot has to be localized and the move base has to be functional to correctly

execute a move action.

1 (:action move

2 :parameter(?r - robot , ?from - location , ?to -

location)

3 :precondition (and (next move ?r ?from)

4 (at ?r ?from)

5 (state MOVE_BASE INIT)

6 (state NAVIGATION LOCALIZED))

7 :effect (and (not (at ?r ?from))

8 (at ?r ?to)

9 (not (next-move ?r ?from))

10 (last-move ?r ?fri))

11 )

12 )

Listing 4.5: An action with hardware component constraints

Component State Changes

With action alternatives depending on the hardware states and the definition for

all hardware components at hand, the last thing we need, are all exogenous actions

representing uncontrollable hardware component state changes properly defined in

PDDL. We want the planner to search for possible hardware state changes, determine

the effects on the executed actions and return all hardware state changes, that would

lead to an adapted history, that is consistent with the observations. We want to

encode the fact, that an explanation based on a single hardware state change is more

likely than two or more unrecognised state changes at the same time by introducing

action costs to these exogenous actions. By using cost-optimal planning algorithms,

like K∗, we then compute k explanations with the lowest number of hardware failures.

An example exogenous action that represents the move base component, as defined

in Figure 4.2, switching to the STUCK state is shown in Listing 4.6.
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1 (:action get_stuck

2 :parameter()

3 :precondition (state MOVE_BASE INIT)

4 :effect (and (not (state MOVE_BASE INIT))

5 (state MOVE_BASE STUCK))

6 )

Listing 4.6: An exogenous action

The planner can then replace an executed action with one of its variations by inserting

the exogenous action, that leads to a state for which an action variation is defined.

Applying a state change like Listing 4.6 to the component at a certain point in the

history, forces the planner to exchange the move action with its variation move

stuck, as defined in Listing 4.7.

1 (:action move_stuck

2 :parameter(?r - robot , ?from - location , ?to -

location)

3 :precondition (and (next-move ?r ?from)

4 (at ?r ?from)

5 (state MOVE_BASE STUCK))

6 :effect (and (not (next-move ?r ?from))

7 (last-move ?r ?from))

8 )

9 )

Listing 4.7: An action variation of move

We enable the engineer to define the finite state machines of the hardware components

in YAML files, which are then parsed and dynamically added to the PDDL domain.

A definition of the Localization component, as shown in Figure 2.2, is given by the

YAML file shown in Listing 4.8. Exogenous transitions are identified by specifying a

probability value for an edge.

A diagnosis is then solved by applying possible state changes, following the effect

which the changed component state have onto the executed history and verifying

that the resulting belief is consistent with the observation.

Following the example from the beginning, we want to find an explanation for

the product P not being at the machine B. A part of the planner run on this

diagnosis problem is shown in Listing 4.9. The first plan assumes that the move base

component got stuck, prohibiting the robot from moving to machine B. Therefore,

the product was placed back into machine A. The second plan assumes the gripper

to be broken, resulting in the product still being at machine A.
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1 localization:

2 states:

3 - INIT

4 - LOCALIZED

5 - LOST

6
7 INIT:

8 edges:

9 - LOCALIZED

10 LOCALIZED:

11 transition: localize

12
13 LOCALIZED:

14 edges:

15 - LOST

16 LOST:

17 transition: lost

18 probability: 0.2

19
20 LOST:

21 edges:

22 - LOCALIZED

23 LOCALIZED:

24 transition: localize

Listing 4.8: YAML definition of the localization component

1 Plan: 1

2 (order_1)

3 (pick R-1 P A)

4 (order_2)

5 (get_stuck)

6 (move_stuck R-1 A B)

7 (order_3)

8 (put R-1 P A)

9 (order_4)

10 ; cost = 1

11
12 Plan: 2

13 (order_1)

14 (break-gripper)

15 (pick-failed R-1 P A)

16 (order_2)

17 (move R-1 A B)

18 (order_3)

19 (put R-1 P B)

20 (order_4)

21 ; cost = 1

Listing 4.9: Planner output for the example problem
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Figure 4.3: A plan that failed because of a failed instruct action

Domain Design Principles

While developing and testing, it became clear that one of the most critical points in

terms of a successful diagnosis generation is the design of the PDDL domain. We

identified some principles, that had to be followed in order to generate a PDDL

domain, that is sufficient for a successful diagnosis candidate generation.

Restrict exogenous action insertion Using hardware models in the history-based

diagnosis generation leads to the planner inserting hardware component state changes

in some places into the history, exchanging plan-actions with faulty alternatives and

checking if the generated history is consistent with the observation. However, there

may exist several places in the history for an exogenous action to be inserted without

changing the resulting world state. Due to the fact that PDDL planners generate

totally ordered plans, this will result in a lot of solutions that only differ in the places

in which an exogenous action was inserted. Only when comparing the resulting world

states, it is possible to exclude duplicated diagnosis candidates. Additionally, in

order to make sure that the top-k planner generates sufficient diagnosis candidates,

we have to choose a rather large value for k in order to not loose any hypothesis due

to the duplicated, optimal hypotheses, cluttering the top-k set.

To explain this problem in more detail, we want to examine an example of a failed

plan, as shown in Figure 4.3. The plan failed, because the instruct action failed. We

assume, that the instruct action has a single hardware component dependency, namely

an established connection to properly send the instruct message. One explanation,

among others is, that the robot lost the connection to the machine in some point of

the plan. Since the previous executed actions did not depend on the connection, it is

not clear at which point the connection was lost.

The planner now generates diagnosis candidates with the exogenous action that

represents the connection loss, inserted at various places into the history, as shown in

Figure 4.4. Note, that the introduction of the order actions, as shown in Section 4.2.1,

doubles the places, in which an exogenous action can be inserted. All these diagnosis

candidates result in the same world model and therefore do not contribute to the

diagnosis.

To compensate the bloat of generated diagnosis candidates, we introduced an

(exogenous-possible) predicate, that is added as an effect of each order ac-

tion and retracted as an effect of each domain specific action. The (exogenous-

possible) is then added to the precondition of every exogenous actions. Thus, an
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Figure 4.4: Multiple explanations, that result in the same world state

exogenous action can only be inserted after an order action and before an action

of the history. By doing so, we can already remove half of the unnecessarily gener-

ated candidates. A proper solution would be, to allow the insertion of a hardware

component state change action only directly before any action, that depends on

this hardware component. This would properly model the fact, that we are sorely

interested in the fact, that the state changed before executing the action. The

exact point of time when the state change happened however is not of particular

interest. However, this would drastically increase the complexity of the exogenous

state change actions and any change of the normal actions would require changes

in multiple places of the domain and probably lead to errors in an ongoing design

process. Another solution would be the use of a planner that generates partially

ordered plans. However, currently there exist no planner for the top-k planning

problem that can generate partially ordered plans.

Multiple identical actions in a plan When using the order actions as proposed

in Section 4.2.1, we ran into problems when diagnosing a failed plan, that contained

multiple instances of the same action with the same parameters. Since the order

actions only determine the next action in the history and some of its parameters,

it is possible to skip a part of the history, when the same action appears twice or

more in the history. To cope with this side-effect, we could use a counter predicate

or any numerical fluent for each action/parameter combination, that is increased

in the order actions. By adding the desired number of times an action/parameter

combination appeared in the history to the goal condition, the planner is forced to

generated adapted histories with the correct action sequence.

Model all side effects of an action When designing the PDDL definition of an

action with the intention to use it for planning, it is sufficient to model the desired

effects and preconditions of an action. Refer to Listing 4.10 for a put action that is

sufficient for planning purposes. It correctly models the fact, that the put action
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will move the workpiece, currently held by a robot, to the machine the robot is

currently at, which is the way the put action should behave.

1 (:action wp-put

2 :parameters (?r - robot ?wp - workpiece ?m - mps)

3 :precondition (and (at ?r ?m INPUT)

4 (wp-usable ?wp) (holding ?r ?wp)

5 (mps-side-free ?m INPUT))

6 :effect (and (wp-at ?wp ?m INPUT)

7 (not (holding ?r ?wp))

8 (can-hold ?r)

9 (not (mps-side-free ?m INPUT))

10 )

11 )

Listing 4.10: Put action sufficient for planning purposes

In reality, putting a workpiece can be done even if the machine is currently occupied.

Any workpiece that is located at the target position will be knocked away. Also,

the robot may try to put without holding any workpiece. A first step to model

the realistic behaviour of an action was presented before by differentiating between

hard and soft preconditions. However, we still have to model possible, undesired

side-effects as well. Holding a workpiece that was located at the machine is an

optional but desired effect. Knocking a workpiece, that rested at the machine, away

while putting another workpiece, is an undesired effect and is normally not included

in the PDDL model of an action normally. Therefore, we identified some principles,

which should be followed when modelling an action for diagnosis purposes:

• Use preconditions only for conditions, that have to be true in order for the

action to complete the execution without failing and grounding of parameters.

This contains all conditions, that are checked during the execution of the action.

• Any other conditions, that influence the effect of the action, have to be used as

conditions for conditional effects.

• Sometimes an action can have arbitrary undesired side effects on other objects.

In this case these objects have to be added to the parameters and grounded in

the preconditions. Use a dummy object in cases where there is no additional

object affected to prohibit bloated grounding of action instances.

Naturally, this will increase the complexity of an action model drastically. However,

it is necessary for a complete diagnosis candidate generation. Refer to Listing 4.11

for an example put action that correctly models all effects, an executed put action

can have.
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1 (:action wp-put

2 :parameters (?r - robot ?wp - workpiece ?m - mps

3 ?side - mps-side

4 ?there - workpiece)

5 :precondition (and (state gripper CALIBRATED)

6 (state realsense ACTIVATED)

7 (state tag-camera ACTIVATED)

8 (state laser ACTIVATED)

9 (at ?r ?m ?side)

10 (or (and (mps-side-free ?m ?side)

11 (dummy-wp ?there))

12 (wp-at ?there ?m ?side)

13 )

14 (or (holding ?r ?wp)

15 (and (can-hold ?r)

16 (dummy-wp ?wp))

17 )

18 )

19 :effect (and (not (exog-possible))

20 (when (and (holding ?r ?wp))

21 (and (wp-at ?wp ?m ?side)

22 (not (mps-side-free ?m ?side))

23 (not (holding ?r ?wp))

24 (can-hold ?r)

25 )

26 )

27 (when (and (not (mps-side-free ?m ?side))

28 (wp-at ?there ?m ?side))

29 (and (not (wp-at ?there ?m ?side))

30 (not (wp-usable ?there))

31 )

32 )

33 )

34 )

Listing 4.11: Put action sufficient for diagnosis purposes purposes

Note the use of conditional effects to move a part of the preconditions used in the

action desired for planning to the effects, following the second principle. For example,

the put action will succeed, even if the robot does not hold a workpiece. However,

if it holds a workpiece, the workpiece will be placed on the machine and the robot

does not hold it any more.

Additionally, there is an optional object influenced by the put action, as mentioned

above. The ?there workpiece refers to a workpiece, that may already laying at the

machine. This parameter is grounded with a dummy workpiece, if the machine is

not already occupied and grounded with the workpiece that will be knocked down

otherwise. The same method is used for the ?wp workpiece, that will be placed onto

the machine if the robot currently holds the workpiece and grounded with the dummy

workpiece otherwise. Alternatively, we could have multiple put actions, modelling
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the different situations in which a put action could be executed. So, a put nothing

action and a put knock off action would have to be added. The put nothing

action models a put action without holding a product and the put knock off action

models a put action to a location where already a product rests.

Additional to the integration of the history and the platform models into the PDDL

domain description, we have to generate a PDDL problem description. The PDDL

problem description contains all available objects, the initial world state and a goal

description.

4.2.2 Problem Description

There are two possible reasons why we want to perform a diagnosis task. The first

and more straight forward reason is, that an action failed at some time during plan

execution. Provided the action was correctly modelled, this implies that one of its

preconditions was wrongly believed to be true. Thus, we can create a PDDL problem

description, as described in Subsection 2.4.1, by adding the state of the world from

before executing the plan and a goal description consisting of (next-FINISH) and the

negation of the precondition (without the ordering predicates) of the failed action.

The k-planner then generates all history adaptations, that lead to one or more of the

preconditions of the failed actions to not be fulfilled.

1 (:goal (and (next-FINISH)

2 (not (and (at ?r ?from)

3 (state MOVE_BASE INIT)

4 (state NAVIGATION LOCALIZED)))))

Listing 4.12: A diagnosis goal for a failed move action

The second situation, where we want to perform a diagnosis task is when some sort of

monitoring process observes a fact that contradicts the current world model. In this

case we want to reevaluate the last executed or currently running plan. Similar to the

problem description generation after a failed action, we can generate the description

by adding the contradicting observation to the goal.

4.3 Active Diagnosis

As described in Section 2.2, after generating diagnosis candidates, we have to narrow

the set of diagnosis candidates in order to identify the correct diagnosis. For a given

set of diagnosis candidates, a set of facts that are true in all diagnosis candidates

can be determined, which is called the shared knowledge. For every candidate, that
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is excluded by some sensing action, the shared knowledge will increase since at least

one disagreement on a fact will be resolved. Following the active diagnosis approach

of Mühlbacher and Steinbauer (2014) and introduced in Section 2.2, we select the

sensing action with the highest mutual information I(α(~x);W (s)) regarding the set

of diagnosis candidates W (s):

I(α(~x);W (s)) = H(α(~x))−H(α(~x)|W (s)) (4.1)

We introduced a active diagnosis CLIPS environment in which the resulting world

states are calculated and sensing results are integrated. After a failure was detected,

the PDDL problem was generated and possible diagnosis candidates were calculated

by using the K∗ planner, we set up the active diagnosis environment by calculating

the resulting world state of each diagnosis candidate. The CLIPS Executive then

can request the information gain of a sensing action, which will be calculated by

using the formula presented in Section 2.2. After executing a sensing action, the

CLIPS Executive informs the active diagnosis environment about the sensing result,

which then excludes all contradicting diagnosis candidates. Afterwards, the shared

knowledge can be updated and any new information can be synced to the CLIPS

Executive world model.

In order to calculate the impact H(α(~x)) of a sensing action α(~x), the probability pw
of each diagnosis candidate w ∈W (s) is used. Here, we incorporated the knowledge of

an engineer, as given in the hardware model configurations, about the probabilities of

certain hardware component state changes. Each diagnosis candidate, that assumes

a hardware failure, consists of one or more exogenous actions, that model such a

component state change. These exogenous actions represents the exogenous edges of

the hardware models, as explained in Section 2.3. Thus, by assigning probabilities

to exogenous transitions of the component models, as shown in Listing 4.8, we can

determine the probability of a diagnosis candidate w as pw =
∏
a∈hw pa, where a is

an action in the history of w and pa the probability of the action, if it is a state

change action, or 1 if not. Note, that the probability values do not have to represent

the actual probabilities of the real system, as long as the proportions between the

probabilities are correct.

Since this thesis focusses on diagnosis candidate generation and recovery, we make

some assumptions and adaptations, resulting in a simplified active diagnosis pro-

cess.

Ignore sensing noise As described previously, the mutual information gain of an

action depends on the entropy of the probabilities of the resulting splitting. The

information gain I(α(~x);W (s)) is decreased depending on the noise H(α(~x)|W (s)),

a sensing action is subject to. However, since the work in this thesis concentrates

on the diagnosis candidate generation and recovery behaviour, we will omit the
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sensing noise and assume perfectly working sensing actions. Therefore, in this thesis

is H(α(~x)|W (s)) = 0 for all sensing actions. Investigating the influence sensing noise

will have onto the active diagnosis process is a task on its own and shall be subject

of future work.

Single valued sensing result To ease the calculation of the diagnosis candidate

set splitting, we assume that any sensing action only senses a single predicate. This

is sufficient for the sensing actions in our domain and results in simple calculation of

the splitting of the diagnosis set.

Assume finite amount of domain objects As mentioned in Section 2.2, there

exist two different algorithms for calculating the next sensing action. The difference

between these two algorithms is, that the first one requires a domain with finite

number of domain objects guaranteed, whereas the second one can deal with infinite

numbers of domain objects but requires a first order theorem solver. In general, we

do not want to make the assumption of a finite amount of domain objects. In this

thesis, we want to make this assumption in order to not have to integrate a first

order theorem prover and to be able to concentrate on the diagnosis generation and

repair.

4.3.1 Integrating Active Sensing Into CLIPS Executive

In order to integrate the active sensing into the CLIPS Executive, we had to make

some adaptations to the CLIPS Executive. The adaptations are presented in the

next sections, along with a more detailed explanation of the implementation of the

active diagnosis.

Shared Knowledge

One major point of being able to perform active diagnosis is the knowledge about

which sensing actions are executable. In order to be able to achieve this goal, we need

to determine what is true in all diagnosis candidates. The resulting world state is

called shared knowledge and contains every information that all diagnosis hypotheses

can agree on. Therefore, we can not only use the shared world model for selecting

sensing actions, but also update the CLIPS Executive world model every time the

set of diagnosis candidates gets narrowed down, resulting in an online information

gain during the active diagnosis process.

The diagnosis generation, as described in the preceding chapters, returns a set of

diagnosis candidates. A diagnosis candidate as given as an adapted action sequence.

To determine the resulting world state of each diagnosis candidate, we use a stored

CLIPS Executive world model from the point of time when the execution of the
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diagnosed plan started. By propagating the actions of a diagnosis candidate through

applying all effects of the actions one after another, the resulting world state can

be determined. After propagating the diagnosis candidate actions, we can exclude

one of any diagnosis candidates, that result in the same world state. The set

of facts believed to be true for a single diagnosis candidate di is then given as

Kdi = {ρ|ρ is true in di}. For the active diagnosis at time t, the shared knowledge is

defined as Kt
shared = ∩di∈V tKdi with V t the set of valid diagnosis candidates at time

t.

Since the shared knowledge only will increase as more diagnosis candidates are

excluded during the active diagnosis, we already can update the CLIPS Executive

world model. Thus, the active diagnosis results in an online updating of the world

model, which is especially useful in cases where the active diagnosis may take a

longer amount of time. By incrementally updating the world state according to new

findings, any other agent can already formulate goals on the partially updated world

model.

However, synchronizing the CLIPS Executive world model with the shared knowledge

is not trivial. The CLIPS Executive world model may change during the ongoing

diagnosis, due to parallel running goals or updates from other agents. Simply deleting

all facts, that are not in Kshared may delete facts that were not influenced by the

diagnosed plan. To cope with this difficulty, we build up another set of facts that

represents the assumed world state after executing the plan. This is simply done

by applying all executed actions of the original history to the backup world state,

resulting in Kassumed. Obviously, Kassumed is known to be unconsistent with the real

world, since it contradicts the observation that lead to the diagnosis in the first

place. Now, we can determine all facts to be deleted from the CLIPS Executive world

model by selecting all facts true in Kassumed and not true in Kshared. Thus, any fact

that was asserted to the CLIPS Executive world model and not influenced by the

diagnosed plan will be ignored.

Asserting facts of the shared knowledge can be dangerous due to similar reasons.

There might be facts in Kshared, that were not influenced by the diagnosed plan at

all, but another agent deleted them. Blindly reasserting these facts would revert the

changes introduced by another agent. Thus, we only assert facts, that are true in

Kshared, but not in Kassumed. However, there is still one case that needs treatment.

A fact ρ ∈ Kassumed might be true in one or more di ∈ V t, but there is at least one

dk, with k ∈ V t where ρ 6∈ Kdk . Thus, at time t, syncing the shared knowledge to

the CLIPS Executive world model would have removed ρ from the CLIPS Executive

world model since ρ 6∈ Kt
shared. If the next sensing action excludes all diagnosis

candidates in which ρ is not true, ρ will be in Kt+1
shared and have to be asserted to the

CLIPS Executive world model again. Since ρ already is a member of Kassumed, the

above condition is not met and we are in need of another condition for reasserting
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deleted facts. This is solved by keeping track of all deleted facts by adding them to

a set Kdeleted and also allowing the reinsertion of these facts. Thus, asserting a fact

ρ to the CLIPS Executive world model is allowed if one of the following conditions is

met.

• ρ ∈ Kshared and ρ 6∈ Kassumed

• ρ ∈ Kshared, ρ ∈ Kassumed and ρ ∈ Kdeleted.

Both of these conditions for syncing the shared knowledge to the CLIPS Executive

world model are based on the assumption, that no other agent is able to modify

the facts that are influenced by the diagnosed plan. If this assumption is not

valid, additionally checks for the syncing process are needed in order to guarantee a

consistent world model.

Sensing actions

Currently, the CLIPS Executive does not have a concept of sensing actions. Therefore,

we had to find a way to define sensing actions in order to enable the active diagnosis to

determine all executable sensing actions and the information gain of each grounded

sensing action. This is done by using a domain-sensing-action fact template,

that defines the sensed predicate for a PDDL operator, as shown in Listing 4.13.

Each sensing action is then defined in the PDDL domain, just like all normal

actions, and the domain-sensing-action is added to define the sensed predicate

and the connection between the parameters of the operator and the parameters of

the predicates.

1 (deftemplate domain-sensing-action

2 "Defines an operator as sensing action. A successful

executed sensing action results in the assertion or

retraction of the grounded sensed predicate"

3 (slot operator (type SYMBOL))

4 (multislot param-names (type SYMBOL))

5 (slot sensed-predicate (type SYMBOL))

6 (multislot sensed-param-names (type SYMBOL))

7 (multislot sensed-constants)

8 )

Listing 4.13: CLIPS struct for sensing actions

Imagine an action, that takes pictures using a realsense camera and uses some sort

of image recognition method to determine, whether there is a workpiece located at

the machine, the robot is currently standing, or not. The action depends on the
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realsense camera to be activated and the robot standing at the machine and does

not have any direct effect, as shown in Listing 4.14.

1 (:action check-workpiece

2 :parameter(?r - robot , ?m - mps , ?side - mps-side)

3 :precondition (and (state REALSENSE ACTIVATED)

4 (at ?r ?m ?side)

5 :effect ()

6 )

Listing 4.14: Check workpiece sensing action

For this operator, a domain-sensing-action fact is asserted, which determines,

that the check-workpiece action will assert or retract the mps-side-free predicate.

The sensed-param-names define the parameter names of the sensed predicate. The

parameters are grounded with a constant, if the corresponding index of sensed-

constants is not nil, and with the grounded parameter of the same name of a

grounded check-workpiece action otherwise. Thus, the check-workpiece(R-1 C-

CS1 INPUT) will assert or retract (mps-side-free C-CS1 INPUT) depending on

the result of the sensing.

1 (domain-sensing-action

2 (operator check-workpiece)

3 (param-names r m side)

4 (sensed-predicate mps-side-free)

5 (sensed-param-names m side)

6 (sensed-constants nil nil)

7 )

Listing 4.15: domain-sensing-action fact for the check-workpiece operator

Regarding Incomplete Knowledge

As mentioned above, the CLIPS Executive makes the closed world assumption.

That means, that every fact not explicitly known to be true, is treated as false.

However, if active diagnosis fails to result in one single diagnosis hypothesis, there

is at least one fact that is true in one diagnosis candidate and false in another one.

Unfortunately, this is not directly representable in the CLIPS Executive. The current

implementation of the RCLL domain in the CLIPS Executive uses a lot of mutually

exclusive predicates, representing the state of an object. For example for any usable

workpiece, there exist a fact (domain-fact (name wp-at) (param-values WP M

SIDE)), representing that the workpiece WP is currently located at the SIDE side
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of machine M. This basically resembles functional fluents, since we always assume

exactly one predicate for each object and property. So, as soon as active diagnosis

can not agree on the truth value of such a predicate, there will be no information

about the position of an object at all. This indirectly models the uncertainty about

the position.

However, with this indirect way of modelling incomplete knowledge about a property

of an object, we will loose information gained by the active diagnosis. For example,

we may end up with two diagnosis candidates, that can not agree on the position of a

workpiece. But, since we only have two diagnosis candidates left, we know, that the

workpiece has to be at one of two possible positions. However, the information about

possible positions can not be transferred into the CLIPS Executive, since the CLIPS

Executive world model is unable to express disjunctive knowledge. As mentioned

above, the CLIPS Executive will remove the wp-at fact about the workpiece, loosing

the information, that we know that the workpiece can only be at one of the two

machines.

4.4 Repair

To really benefit from the integration of hardware models into the diagnosis approach,

the robot needs to be able to take the information gained about possible hardware

faults into account when deciding about future goals. Based on the findings of a

diagnosed failure, the agent may decide to try to repair itself, if possible, or to

exclude itself from the production and call for human intervention. In a multi-robot

scenario it is better to give up and let other agents do the job, than to block resources

while trying to reach a goal with broken hardware repeatedly.

So, after performing active diagnosis, we may end up with a single diagnosis candidate.

If this diagnosis candidate blames a previously unrecognised hardware component

state change, the agent now has a new insight about the state of its hardware platform.

However, in some cases we may end up with more than one diagnosis candidate

without being able reduce the set any further. Thus, the agent has to deal with

incomplete knowledge about the exact hardware component that caused the failure

or about the exact state change that occurred. Note, that the active diagnosis and

the way we implemented the update of the CLIPS Executive world model, will only

result in a component state for component c, if all diagnosis candidates agree on

one state for c. So after finishing the active diagnosis, we end up with one or more

components with unknown state or a single component being in a faulty state. To

enable the CLIPS Executive to deal with these kind of situations, we introduced

repair goals. For each component c, that is able to reset itself and where the success
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of the reset is observable by the agent, a specific repair goal can be formulated if one

of following conditions is true:

• The state of the component c is unknown.

• The component is in a state where a reset is possible.

Thus, as soon as the diagnosis of a failed goal finishes, the failed goal gets retracted

and the CLIPS Executive starts over by formulating all reachable goals. If any

component needs repair that has a repair goal, this repair goal gets formulated with

the highest priority.

Take a failed gripping action as example. The robot drove to a machine and tried to

grab a product from the output side. After finishing the gripping action, it senses

that the gripper is empty. After generating all possible diagnosis candidates and

performing active diagnosis, the explanations, that are still valid, are:

• The laser, used for aligning the with machine, has got decalibrated and therefore

the robot was not aligned properly.

• The gripper has a broken axis, so it could not move.

• The gripper is decalibrated, resulting in missing the product when performing

the gripping action.

The agent is not able to determine whether the laser is decalibrated or not, as well

as it can not determine, if the axis is broken or just decalibrated. Therefore, it has

to deal with two components, that could be faulty. The agent knows that it can

try to repair the gripper by calibrating it. Calibrating a gripper will fail if the axes

are broken. So after finishing the diagnosis process of the failed goal, the agent will

formulate and select the REPAIR-GRIPPER goal, as shown in Listing 4.16. If this

goal succeeds, the gripper component is known to be in the calibrated state again,

and will be in a broken state otherwise.
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1 (defrule goal-production-gripper-repair

2 (declare (salience ?*SALIENCE-GOAL-FORMULATE*))

3 (goal (id ?urgent-id) (class URGENT) (mode FORMULATED))

4 (or (not (domain-fact (name comp-state)

5 (param-values gripper ?state)))

6 (domain-fact (name comp-state)

7 (param-values gripper UNCALIBRATED)))

8 (not (goal (class REPAIR-GRIPPER)))

9 =>

10 (assert (goal (id (sym-cat REPAIR-GRIPPER (gensym*)))

11 (parent ?urgent-id)

12 (class REPAIR-GRIPPER)

13 (sub-type SIMPLE)

14 )

15 )

16 )

Listing 4.16: REPAIR-GRIPPER goal.

After attempting to repair all faulty components or resetting components with

unknown state, the agent may try to continue the production if possible. However,

by guarding the formulation of production goals with conditions that check for the

required hardware components being functional, the agent can react on being partly

broken. If no production goal is executable, the agent may decide to call for human

intervention since it is not operable any more.
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In this chapter we want to present the results and observations we obtained while

testing our approach. Mainly, we want to evaluate two main questions:

• What effect does the integration of hardware models have onto the generation

of history-based diagnosis candidates?

• To what extent does a team of robots benefit from the integration of hardware

models into the diagnosis step?

The first question can be answered by comparing the runtime and the number of

expanded states of the K* planner for the same diagnosis problem, but once with

and once without integrated hardware models. The second question will be answered

by analysing the performance of a team of 3 robots in simulated RCLL games with

simulated hardware failures. We will evaluate three different settings for the team of

robots.

1. Equipped with diagnosis with integrated hardware models.

2. Equipped with diagnosis without integrated hardware models.

3. No diagnosis at all.

5.1 Simulation

As mentioned in Section 2.5, we are able to simulate complete RCLL games in

Gazebo. The Gazebo simulation consists of several plugins, that simulate hardware

components, processes and machines. Among others, a robot is simulated by a gripper

plugin, a conveyor align plugin and several sensor plugins. The Gazebo simulation is

able to simulate up to six robots, three for each team. Since we are sorely interested

in the performance of a single team, we will only use 3 robots. Gazebo offers

communication with external components via TCP/IP sockets, managed by Boost

ASIO. These sockets establish topics, on which messages are send by a publisher to

subscribers (Koenig and Howard, 2004). Protobuf messages are used to define the

different message types, that are send on the topics.
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Figure 5.1: Closing gripper fingers in reality and simulation

Simulating Action Execution

As described in Section 2.6, any action, executed by the agent, that resembles a

more complex behaviour, is implemented as a skill. A skill combines several low-

level components to more abstract behaviours. In the simulation, these low-level

components are simulated by Gazebo plugins. For example, when operating in the

real world, grabbing a product utilizes an alignment and a gripping subskill. First,

the alignment skill is used to align with the machine output and uses several different

plugins in order to accomplish this task. Then, the gripper skill is used to control

the gripper axes. In order to do so, the gripper skill instructs the Arduino plugin,

which controls an Arduino board via a serial connection. The Arduino board then

controls the motors of the gripper axes. When simulating, the Arduino plugin gets

replaced by a mock up plugin, that interacts with a Gazebo plugin, responsible for

simulating gripping and placing, as shown in Figure 5.1.

To simulate hardware failures, each Gazebo plugin, that simulates a hardware

component, maintains a finite state machine with randomly triggered state changes.

The probabilities of a state change can be configured and at certain points in time

plugin will check if the state of the finite state machine should change, simulating

a malfunctioning hardware. Thus, we can simulate unexpected component state

changes and the effect this will have on to the real world. The agent than may come

across unexpected observations or action failures determined by these simulated state

changes.

Sensing actions are implemented by sending a protobuf request to the corresponding

Gazebo plugin. Similar to sensing actions, the reset and repair actions are realized.

Sensing results are transmitted via protobuf messages as well. For example, the

agent may sense for the gripper component being calibrated and sends a protobuf

request message. The Gazebo gripper plugin of this robot then checks the simulated

state of the gripper and sends the response. We use the predefined request and

response messages from Gazebo.
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Simulated Hardware Components

The scenario we chose to evaluate the diagnosis approach consists of four hardware

components: gripper, realsense 3D camera, laser scanner and tag camera. These

components and their states are strongly influenced the system used by the team

Carologistics at the RoboCup in the last years (Hofmann et al., 2019), (Hofmann

et al., 2018a).

The gripper is used for gripping and placing products and has 3 fault states:

• The axes can become decalibrated, resulting in unprecise movement and even-

tually missing the product while trying to reach it.

• The axes can break, therefore loosing the ability to move at all.

• The gripper fingers can get stuck, resulting in the currently gripped product to

not be released.

All three different fault states have different effects on the execution of the gripping

and placing actions. For example, a placing action with a broken gripper axis will

result in dropping the product to the floor, while trying to place the product with

broken gripper fingers will result in the product still being grabbed and any product

that may have been laying at the target position being knocked down. The agent

may sense if the gripper is calibrated and if not, try to recover by recalibrating the

gripper. Obviously, the recalibration will fail if the axis or the gripper fingers are

broken.

The realsense is needed by the gripping and placing actions to determine the position

of the conveyor belt, on which the products are located or have to be placed. The

realsense sometimes either loses the connection or breaks completely. In both cases,

the aligning of the grabbing action will fail. Sometimes, the robot is able to recover

the realsense camera by disconnecting and connecting again.

A tag camera is used to detect the marker of the machines and therefore find the

approximated position of the machine when aligning. In rare cases, the tag camera

stops working and in this scenario we assume that the agent has no control or

information about the state of the camera.

Similarly, the laser scanner is used for determining the machine position. Also,

the laser scanner is used for localization purposes. Therefore, the state of the laser

scanner is also a dependency for all actions that require localization or navigation.

With all these hardware components, we cover most of the failure types. Errors

caused by the gripping actions are not detected right away and may be discovered

indirectly when a machine fails to process due to a missing product in its input. These

failures are the most complicated in regard to the world model, since the position
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of the product, that was assumed to be moved, is important for the continuation

of the production and therefore has to be re-evaluated. If the product still rests in

the old position, it has to be removed. Otherwise, the product blocks the output of

the machine it is resting in, drawing the whole machine unusable. The realsense has

a direct effect on the execution of gripping and placing actions and cause a failure

of the execution. But contrary to the tag camera, the state of the realsense can be

sensed and in case of a lost connection, the connection can be re-established.

Restrictions

For a selected goal, the CLIPS Executive uses pre-defined plans with 5-17 actions in

order to expand the goal. We introduce some restrictions to the simulated scenario,

in order to reduce the complexity of the evaluation and to be able to concentrate on

the performance of our approach:

• Following the principle of Ockham’s razor, we ignore all explanations that do

not imply a minimal number of exogenous state change actions. Therefore, if

we find an explanation that assumes only one unrecognised state change, we

ignore all explanations with two or more state changes.

• We assume perfect sensing actions without noise or failures. Theoretically,

our approach also can diagnose failures of sensing actions, that are part of

another ongoing diagnosis. However, this does not promise any new insights

while increasing the complexity of the integration into the CLIPS Executive

drastically.

5.2 RCLL Game Results

We simulated 16 games per scenario, in order to calculate the average number of

points the team of robots was able to achieve. Points are awarded for successfully

delivered products and buffering left-over products in the ring stations. Each 0.5

seconds, the plugins that simulate hardware components change their state with the

configured probabilities. We can add all probabilities of state transisitions to states

from which the robot can recover, e.g. the UNCALIBRATED state of the gripper,

to precoverable. Similarly, all transitions to terminal states from which the robot can

not recover can be summed up as pterminal. Both combined represent the probability

of any hardware failure: pfailure.
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pfailure No Diagnosis Diagnosis without
integrated hardware
models

Diagnosis with in-
tegrated hardware
models

Mean Min Max Mean Min Max Mean Min Max

0.12% 71.31 6 260 76.66 12 217 160.94 93 229

0.19% 58 4 142 68.44 12 151 156.6 91 295

0.27% 32.75 0 98 37.88 0 144 109.5 10 174

Table 5.1: Mean, minimum and maximum number of points a team of robots was
able to achieve.

Figure 5.2: Ordered list of points gained in each game
for pfailure = 0.27%

We evaluated the three dif-

ferent teams in three scenar-

ios with different values for

precoverable and pterminal, as

shown in Table 5.1. In gen-

eral, a team of robots with

history-based diagnosis was

not able to increase its per-

formance in comparison to a

team without diagnosis. In-

tegrating hardware models

into the diagnosis process re-

sulted in a significant perfor-

mance gain, as shown in Fig-

ure 5.4. However, all three

teams are influenced by the probabilities of a hardware failure. Even though the

teams with integrated hardware models were only stopped by hardware failures, from

which the robot can not recover itself, the time needed to recognize a failure and

performing the diagnosis had a negative impact onto the number of points gained.

In all three settings for the hardware failure probabilities, the teams with our approach

were able to gain more than 100% more points in comparison to the other teams. In

scenarios with a more unreliable hardware the performance gain is even higher, as

shown in Figure 5.3.
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Figure 5.3: Increase of the points gained
by a team equipped with diagnosis with
integrated hardware models

Figure 5.4: Average number of points
gained of teams with different evaluation
strategies

In order to understand why our approach enables a team to continue the production,

we want to analyse the reasons for a production stop. Generally, a team is unable to

gain any more points if all robots are broken or if a critical combination of machines

is not usable any more. We identified two main causes for a full production stop,

apart from all robots being not functional.

A goal failure is either caused by an observation that lead to the decision that the goal

is not reachable any more or an action of its plan was failed. In both cases, the agent

knows that its world model is inconsistent with the real world. As long as the world

model is inconsistent, the agent is in danger of continuously failing to accomplish its

task or even waste resources that could have been used by other robots. However,

teams with history-based diagnosis are able to revisit an inconsistent world model.

By performing active diagnosis, the world model can be updated to be consistent

with the real world again.

In our evaluated scenario, a machine is only able to process a production step if it

is in the IDLE state and not occupied by another product. So, if a robot fails to

pick up a product from the output of a machine, this machine can not be used until

the product gets removed eventually. This is critical, especially for the base station,

which dispenses the ground product and is therefore needed as the initial step for

every product. A robot team without diagnosing is not able to re-evaluate the picking

action in the hindsight of a failed subsequent production step. Therefore, as soon as

a pick failed at the base station or any other station critical for the production, the

team is unable to continue. A team equipped with history-based diagnosis is able to

determine the possibility of a leftover product.

The second cause for an agent to not be able to continue the production is missing

awareness about its own incapability. Even if its world model is consistent with the

real world after a failure, the underlying cause may have effect on future actions

and goals. Therefore, determining the effect a failure had onto the world is not
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sufficient to enable an agent to continue the production if the underlying cause

was not determined and repaired. Only the teams equipped with history-based

diagnosis and knowledge about the hardware components are able to identify the

cause of the failure, potentially repairing the malfunctioning hardware and prohibit

any blockade of the production. Any robot, that failed to recover from a hardware

failure, excludes itself from the production. This enables the robots, that are still

functioning correctly, to continue the production. Therefore, these teams are able to

continue the production as long as at least one robot is not broken. This results in

the drastic increase of the average number of points we observed in the simulation

and shows the success of our approach.

After a failure was detected and a robot with history-based diagnosis determined that

a product was left at a machine, the agent is able to decide to remove the product.

However, if the failure was caused by a malfunctioning hardware and the same robot

is tasked with removing the product from the output of a machine, it will continue

to fail this task and probably keep retrying. Thus, the robot gets stuck in a loop

of failing and restarting the task, effectively blocking this machine as well. A team,

that only uses a classical history-based diagnosis approach, therefore will know about

a product remaining at the output of a machine, but still fail to continue production

if the robot tasked with the removal suffers from a broken hardware component. This

explains, why the teams without integrated hardware models are not able to gain

significantly more points than a team without any diagnosis procedure at all.

However, the hardware-based diagnosis assumes hardware failures as primary cause of

action failures. Therefore, an action failure that is not caused by a hardware failure,

e.g. failed to find a plan when moving to a new position, often leads to problems. The

diagnosis process will likely generate explanations containing hardware component

state changes. If the active diagnosis is not able to exclude all of these explanations,

the robot is unable to decide that it is still fully functional. In some cases, he will

wrongly decide that he is not functional and will exclude itself from the production.

For example, if a move action failed, because no path could be found, the diagnosis

procedure may blame the laser component as well, since the move action depends

on a functioning laser scanner. However, if the agent is not able to sense the state

of the laser scanner, there is no way of determining if the failure was random or

caused by a hardware failure. Thus, the agent may decide, that the state of the

laser is undetermined and therefore he should exclude himself from the production.

This is preventable by making sure, that the state of every hardware component is

observable. However, in some cases this is not possible and therefore the risk of a

false exclusion from the game remains.



5.3 Performance 55

Figure 5.5: Runtime comparison of the K* planner for plans of length 7 and 17

5.3 Performance

The time a diagnosis of a fault takes is influenced by three factors: the generation

and solving of the PDDL problem, the setup of the active diagnosis and the sensing

and execution of the active diagnosis. In the following chapter, we want to evaluate

the performance of the planner when solving the generated diagnosis problem and

the performance of the active diagnosis.

5.3.1 Planning Performance

The initial assumption that restricting the action variations to component states

will result in a reduction of the search space for diagnosis candidates proved to be

wrong. In contrary, the state space that has to be searched while searching for valid

history alternations is far bigger. Upon further investigation, it became clear that

while we reduce the number of possible replacements in each step, the insertion of

state change exogenous actions at any point into the plan results in a much bigger

state space.

Given this drawback of our approach, the planning complexity and runtime of

diagnosis generation is still an important aspect since the robot is forced to wait

for the diagnosis process to finish before continuing with the production. K∗ has

two tunable parameters: the number of solutions k and the upper bound of the cost.

As mentioned before, we assign a cost of one to each exogenous state change action.
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Figure 5.6: Number of explored states of the K* planner for given upper bound of
the cost

Thus, the upper bound of the cost relates to the number of unknown state changes

allowed in one diagnosis candidate. It is reasonable to assume, that most of the

failures are caused by a single hardware state change. However, in rare cases two

hardware failures may occur during one plan. As shown in Figure 5.6, the upper

bound of the cost has a huge impact onto the number of explored states and therefore

on the runtime. We experienced that an upper bound of three was sufficient for all

scenarios we tested in the RCLL domain.

The number of generated diagnosis candidates is also important in order to guarantee

that the correct diagnosis can be generated. We observed a linear increase in the

runtime of K∗ for an increased number of k, as shown in Figure 5.5.

5.3.2 Active Diagnosis Performance

Setting up the active diagnosis requires the generation of the resulting world models

of all valid diagnosis candidates. This is done by applying the effects of the actions

of the diagnosis candidates onto the initial world model. Depending on the length of

the diagnosed history, the number of valid diagnosis candidates and the size of the

world model, this can have a huge impact on the overall time needed by the diagnosis

process. In our scenario, we diagnosed plans with between 5 and 17 actions in a

world model that typically consists of 140 - 170 facts. With up to 100 valid diagnosis

candidates, setting up the active diagnosis took up to 30 seconds.
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One factor that has a negative influence on the time needed to set up the active

diagnosis, is the number of diagnosis candidates that result in the same world model.

These diagnosis candidates do not contribute to the result of the diagnosis. Instead,

as soon as two diagnosis candidates that result in the same world state are detected,

one of them gets deleted. Most of the diagnosis candidates only differ by the place in

which an exogenous state-change action was inserted. Therefore, by restricting the

insertion of this kind of actions further, we can reduce the number of unnecessarily

generated diagnosis candidates and therefore speed up the active diagnosis.



6 Conclusion

We summarize our approach to integrate hardware models into a history-based diag-

nosis process. Also, possible improvements are presented considering the performance

and restrictions.

6.1 Summary

In this work, we integrated a model of the hardware platform an agent operates

on into a history-based diagnosis process. A component of the hardware platform

is modelled as a finite state machine, where the states represent the state of the

component and edges represent exogenous or executable state transitions. Integrating

the component states and state transitions into a PDDL domain, we can then define

action variations based on faulty component states. After a failure was detected

or a conflicting observation was made, we can diagnose a sequence of executed

actions by searching for alternations of the executed history. An alternation will be

generated by inserting exogenous actions, that change hardware component states,

and replacing subsequent actions with faulty variants, based on the changed hardware

states. By integrating order actions into the PDDL domain to enforce the diagnosis

candidate to be an alternated history, we can use the top-k planner K∗ to generate

k diagnosis candidates. The generated diagnosis candidates consist of one or more

hardware components that changed their states, causing subsequent actions to behave

differently than expected.

In order to identify the correct diagnosis we used active diagnosis, which is the task of

selecting suitable sensing actions to exclude diagnosis candidates. To narrow the set

of diagnosis candidates in an efficient manner, we select the sensing action with the

highest mutual information. This is done by calculating the impact a sensing action

has onto the set of diagnosis candidates. Here, we can integrate the probabilities

of component state transitions, as modelled in the hardware models, to determine

the probabilities of the diagnosis candidates. Based on these probabilities, the

active diagnosis selects sensing actions that narrow the set of diagnosis candidates

in an efficient manner. After excluding as many diagnosis candidates as possible

and updating the world model, the agent has information about possible hardware

failures, that explain the observation. The agent can then utilize this information to
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try to repair the hardware components or to decide to stop operating and wait for

human intervention.

We integrated our diagnosis approach into the goal reasoning framework CLIPS

Executive and investigated the performance in the RCLL domain. The diagnosis

approach gets integrated into the goal lifecycle as the evaluation step of a failed goal

and consists of the PDDL problem generation, active diagnosis and repair. Using

the Gazebo simulation of RCLL games, we compared the performance of agents with

diagnosis with integrated hardware models to agents without diagnosis and to agents

with diagnosis but lacking information about the hardware platform.

Integrating hardware models into the history-based diagnosis process led to the correct

identification of the underlying hardware failure in most of the cases. This enabled

the agent to repair the faulty hardware component or to decide to exclude itself from

the production in order to make room for the other, still functional robots. Thus,

a team of robots equipped with history-based diagnosis with integrated hardware

models was able to achieve significantly more points than a team without diagnosis

or with history-based diagnosis but missing information about the hardware.

All in all, this thesis presents a promising approach of diagnosing faults and con-

tradicting observations while taking information about the underlying hardware

platform into account, enabling a high-level control agent to attempt to recover or

calling for human intervention. There is still room for improvement, especially regard-

ing the time needed for the diagnosis process and the integration of the knowledge

gained by the diagnosis process into the decision process of the agent.

6.2 Future Work

It was shown, that the upper bound of the cost and the length of the diagnosed

history have a huge influence on the runtime of the planner. Therefore, in other,

more complicated scenarios, the runtime of the planner could increase significantly.

In order to decrease the time needed to generate diagnosis candidates, we can further

restrict the insertion of actions, that changes component states, e.g. by allowing

only insertions of component state changes right in front of actions that depend on

this component. We can restrict the number of generated diagnosis candidates even

further by using diagnosis templates, as presented in Iwan (2002).

Diagnosing action failures by searching for hardware component state changes that

can explain misbehaving actions is based on the assumption, that action failures are

caused by hardware failures. However, in reality actions may fail randomly sometimes.

With integrated hardware models, diagnosing such random action failures may result

in wrong accusation of hardware faults. In the worst case, the agent suspect a
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hardware failure from which he can not recover and stop operating. For example,

the action executor may have additional information about the reason of the action

failure. Therefore, integrating further information about action failures in the

diagnosis process may enable the agent to deal with this problem.

In this thesis, upon detecting an inconsistency, only the currently executing or last

executed plan gets diagnosed. A failure, that was undetected during the execution of

a previous plan and results in a failure during the execution of a later plan, cannot

be properly diagnosed with a goal reasoning framework, like the CLIPS Executive,

where only the current goal gets diagnosed. Extending the diagnosis framework to

take all executed plans to this point into account, by appending all executed actions

to an overall history, is straightforward. However, this will have a huge impact on

the runtime of diagnosis generation and the calculation of the hypothetical world

models, since the length of the history to be diagnosed will increase over time. Also,

this extension is only applicable for a single agent. As soon as more than one agent

operates in the same environment, a failure of one agent may cause the plan of

another agent to fail. Extending the history-based diagnosis approach to multi-agent

scenarios has to be subject of future work.

The integration into the CLIPS Executive represents uncertainty about the state of

an object by reasoning about the non-existence of facts, that describe the property

of an object. By that, disjunctive knowledge about the property of an object is lost.

Integrating a three-valued logic into the CLIPS Executive will create new possibilities

of reasoning about the results of the diagnosis. This could be done by introducing a

method to reason about incomplete knowledge into the CLIPS Executive.
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