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1 Introduction

Robots such as the vacuum cleaner Roomba [39] have started to be part of our lives
and are already used for manufacturing tasks such as automotive assembly [50]. All
these robots perform a single simple task or act in a well-known environment. However,
robotics in more open environments with complex tasks is still an active research field
[31] and has not yet been widely adopted outside of research. One challenge in such
an environment is planning, which is a “process that chooses and organizes actions by
anticipating their expected outcomes” [31]. There are various types of planning, e.g.,
path planning, manipulation planning, and task planning. In this thesis, we focus on
domain-independent symbolic task planning, where the agent has to find a sequence of
symbolic actions to reach a goal state from an initial state.

One of the major challenges of planning in robotics are long planning times, i.e., the
time that a planner needs to find a solution for a given problem. While short planning
times are desirable in general, they are even more so for robotics applications. For
one, in many applications such as the museum tour-guide [10], robots interact with
humans. If an interactive robot takes several minutes to reason about its actions, it
becomes unreactive and the user will claim that the robot is broken. Even without
human interaction, time is usually a limited resource in robotics, which can be seen in
the scenario from the RoboCup Logistics League (RCLL) [64], where a team of robots
needs to transport workpieces between production machines in order to fulfill orders
within 15 minutes. Clearly, in such a scenario, planning times of several minutes are
unacceptable. This becomes even more crucial with continual planning, where plan
generation is interleaved with plan execution and sensing [8], and re-planning occurs
frequently. Therefore, planning should not take longer than a few seconds.

On the other hand, planning is a difficult task. In fact, it is PSPACE-complete when
constrained to propositional planning [11], and NEXPTIME-complete in the general
case [24], which means it cannot be solved efficiently in general. Instead, current state-
of-the-art planning systems such as Fast Downward [32] use heuristic approaches to
solve planning problems in a reasonable time. Fast Downward uses heuristic forward
search in the world state space, i.e., starting in the initial state, the planner generates
successor states by applying all possible actions and evaluates the resulting states with
a heuristic function. It then picks the successor state with the best heuristic value and
continues the search from there.

When looking at the resulting plans from a robotics domain such as the Cleanup
domain [35], we observe that those plans often look very similar and contain the same
sub-sequences of actions. In such a domain, assertions [8] - placeholder actions that defer
parts of of the planning task to later - can significantly reduce planning time [37], but
they require a good understanding of the domain by the designer. A different approach
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is taken by macro planners such as Reflect and Macro-FF, which automatically
concatenate actions to macros, either by analyzing the domain (Reflect), or by using
previous planning results (Macro-FF).

In this thesis, we present database-driven macro planning (DBMP), which automat-
ically generates macro actions from previous planning results by identifying frequent
action sequences in previous plans and re-using those action sequences for planning sub-
sequent problems. We store previous planning results in a database, identify frequent
action sequences in the database, and generate macros from those frequent action se-
quences. In contrast to other approaches, macros are represented as normal operators
including conditional and quantified preconditions and effects. Therefore, no modifica-
tions of the underlying planner are necessary. To find such a representation, we provide a
formal definition of a macro representation of an operator sequence, and we describe how
to generate a macro’s precondition and effects from an operator sequence by regressing
all preconditions and chaining all effects of the operator sequence. From the generated
macros, evaluators select the presumably most useful ones by assigning a score to each
macro according to the macro’s properties such as its frequency. The selected macros
are added to the original domain, which can then be used to solve further planning
problems. In the final step, macros in the resulting plans are expanded to the original
action sequence so the plan can be executed by the agent.

This thesis is structured as follows: In Chapter 2, we introduce planning and the
Planning Domain Definition Language (PDDL) with a particular focus on the Action
Definition Language (ADL) fragment of PDDL. We summarize the main concepts of the
heuristic planning systems Fast-Forward and Fast Downward. We give an overview
of the Situation Calculus, the logic ES, and ADL semantics based on ES. We will use
ES and the ADL semantics to define preconditions and effects of our macro operators.
Then, we present the RoboCup Logistics League (RCLL) as one evaluation domain for
this thesis, describe the robot framework Fawkes as the underlying software system, and
summarize database concepts relevant for this thesis, before we give an introduction into
cloud computing and containerization, which we use for benchmarking. In Chapter 3,
we describe existing macro planners and the differences to DBMP and then present
DBMP in detail in Chapter 4. In Chapter 5, we present a detailed evaluation of DBMP
using domains from the previous International Planning Competition (IPC 2014) [75],
the upcoming robotics planning competition based on the RCLL [57], and the Cleanup
scenario from our lab [35]. We summarize our experience with using Kubernetes for
running a large number of benchmark tasks, we investigate the performance of macro
identification and generation, we analyze planning times and plan lengths for the macro-
augmented domains, and we examine how well our evaluators selected macros. We
conclude with a summary and future work in Chapter 6.



2 Background

In this section, we introduce classical planning, current state-of-the-art classical plan-
ners, the RoboCup Logistics League (RCLL) as benchmark domain, Fawkes as under-
lying software framework, relevant database concepts, and we give an overview of cloud
computing, virtualization, and containerization.

2.1 Classical Planning
In the most general term, planning describes the problem of finding a sequence of actions
to reach a certain world state, called the goal state, from an initial state [72]. In classical
planning, a world state is represented by a set of propositions which are true. Actions are
represented by a set of preconditions and effects. The preconditions must hold when the
action is to be executed, the effects hold after the action has been executed. Depending
on the formalism, there are restrictions on how the world state, the preconditions, and
the effects can be represented. In the following, we will introduce different representation
formalisms, starting with STRIPS and continuing with the de-facto standard formalism,
the Planning Domain Definition Language (PDDL) and its different dialects.

2.1.1 Stanford Research Institute Problem Solver (STRIPS)
The Stanford Research Institute Problem Solver (STRIPS) [65] was introduced in 1971
and is both a representation formalism for planning problems and a solver for problems
described in that formalism. Today, STRIPS is mainly known for the representation
formalism. In STRIPS, the world model is represented as a set of propositions, which
contains all propositions that are true. All propositions not in the set are assumed to
be false. Thus, STRIPS makes the closed-world assumption. Actions are represented
as operators. An operator is defined by its name, parameters, precondition, and effects.
Precondition and effects are defined by sets of propositions. The effect of an operator is
defined by two sets: The add list contains all propositions that are added to the world
model after applying the operator. The delete list contains all propositions that are
removed from the world model after applying the operator.

2.1.2 Planning Domain Definition Language (PDDL)
The Planning Domain Definition Language (PDDL) [48] was introduced by the Plan-
ning Competition Committee of the International Conference on Artificial Intelligence
Planning Systems (AIPS), which today is part of the International Conference on Au-
tomated Planning and Scheduling (ICAPS). PDDL is a problem-specification language
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with the goal to “improve empirical evaluation of planner performance” [48] by providing
a standard format for problem definitions. PDDL is not a single formalism but a set of
formalisms with different expressivity. Among others, it supports basic STRIPS actions,
conditional effects, and existential and universal quantification. A PDDL description
consists of two parts: The domain description and the problem description.

The domain description defines the available syntactic features (requirements), types,
constants, predicates and actions. If no requirement is given, the requirement :strips
is implicitly defined. Other formalisms are used by adding requirements to the domain
specification. Each requirement adds features to the language, e.g., conditional effects
can be used by adding the requirement :conditional-effects. The requirements con-
strain the applicable planning systems and can severely impact complexity. Among
others, the language features shown in Table 2.1 are supported. Strict PDDL has the
additional restriction that all domain keywords must appear in a particular order and
each file can contain only one domain description.

Requirement Description
:strips Effects and preconditions are

conjunctions of atomic propositions
:typing Variables can have types
:disjunctive-preconditions Allow ’or’ in preconditions and goal descriptions
:conditional-effects Actions can have additional effects

if a given condition is true, e.g.,
(when (holding ?o) (at ?o ?l))

:equality Support ’=’ as built-in predicate
:existential-preconditions Allow existential quantification

in preconditions and goals, e.g.,
(exists (?l - location) (aligned ?l))

:universal-preconditions Allow universal quantification
in preconditions and goals, e.g.,
(forall (?o - object) (not (holding ?o)))

:quantified-preconditions = :existential-preconditions
+ :universal-preconditions

:adl = :strips + :typing + :equality
+ :disjunctive-preconditions
+ :quantified-preconditions
+ :conditional-effects

Table 2.1: A selection of possible PDDL requirements. Adapted from [48].

An action definition consists of a list of effects and an optional precondition. Effects
are given as a conjunction of literals, in addition to conditional and universally quantified
effects if the requirement :conditional-effects is given. Note that disjunctive effects
are not allowed. In contrast, preconditions and goal descriptions can contain disjunctions,
implications, existential quantifiers and universal quantifiers, depending on the given
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requirements from Table 2.1. Therefore, action preconditions and goal definitions are
considerably more expressive than action effects.

The second part of a PDDL description is the problem definition. A problem definition
consists of an initial situation and a goal to be achieved. The initial situation is given as a
set of true atomic formulas, anything not mentioned in the initial situation is assumed to
be false. A goal is defined by a goal description in the same way as action preconditions.

PDDL2.1 and PDDL3 PDDL2.1 [27] is an extension to PDDL that adds numeric
fluents and expressions, durative actions, and plan metrics, and thus allows for temporal
modelling. PDDL3 [28] is another extension that supports constraints and soft goals.
In this thesis, none of the additional features is used.

PDDL+ PDDL+ [26] extends PDDL with continuous aspects which allows the mod-
elling of mixed discrete and continuous change. Additionally, it supports the modelling
of predictable exogenous events such as an empty battery, which occurs after the robot
has been driving around for a certain time. A PDDL+ task can be encoded as a hybrid
automaton and solved with a Satisfiability Modulo Theories (SMT) solver [9, 12]. In
this thesis, we will not support PDDL+ planning tasks.

ADL The Action Description Language (ADL) [66] was originally formulated as exten-
sion to STRIPS, but can also be described as a subset of PDDL. PDDL provides the
:adl requirement (cf., Table 2.1), which allows typed objects, disjunctive preconditions,
a built-in equality predicate, quantified preconditions, and conditional effects.

Listing 2.1: The action goto(?to) formulated as PDDL ADL action.
1 (:action goto
2 :parameters (?to - location)
3 :precondition
4 (and
5 (not (exists (?l - location) (aligned ?l)))
6 (not (robot-at ?to)))
7 :effect
8 (and
9 (robot-at ?to)

10 (forall (?loc - location)
11 (when (not (= ?loc ?to)) (not (robot-at ?loc))))
12 )
13 )

An example for an action definition is shown in Listing 2.1. The precondition requires
that the robot is not aligned to any location, because if it is aligned, it is very close to
the location, and therefore needs to back-off first. Second, the robot cannot already
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be at the goal location ?to. The action goto has two effects: First, the robot is at the
goal location ?to. Second, for any location ?loc that is not the goal location ?to, the
robot is not at ?loc after doing action goto(?to). Thus, after executing goto(?l), the
robot is at exactly one location, namely at ?l.

2.1.3 Definite Clause Grammars
Definite clause grammars (DCG) [67] is a formalism that extends context-free grammars
with context-dependency and extra conditions to be included in grammar rules, which
are evaluated during parsing. A DCG can be implemented in Prolog [20]. Listing 2.2
shows a simple DCG rule for a PDDL requirement (e.g., :adl). The extra conditions
starting in line 3 restrict the requirement to strings starting with ”:” and are evaluated
as normal Prolog predicates. Also, the input string R is transformed into a Prolog atom
RAtom. In addition to parsing, DCG Prolog implementations can also be used to generate
strings of the language. We will use DCGs to parse and generate PDDL domains.

Listing 2.2: A DCG rule for parsing a PDDL requirement.
1 requirement(RAtom) −→
2 [R],
3 {
4 atom_string(RAtom, R),
5 string_concat(":", _, R)
6 }.

2.2 Situation Calculus
The Situation Calculus was originally formulated as a first-order language by McCarthy
[47] and was later extended by Reiter to a second-order language [70]. The central
concept of the Situation Calculus are situations which describe the current world state.
In the Situation Calculus, situations are represented by a world history, always starting
in the initial situation S0. A world history consists of a sequence of actions. Similar to
PDDL actions, each action in the Situation Calculus has a precondition that must be
satisfied in order to perform the action, and each action changes certain facts about the
world. The Situation Calculus has a special function symbol do(α, s), which describes
the situation after performing action α in situation s. As an example, the situation
after performing the actions <goto(table), align-to(table)> starting in the initial
situation S0 is denoted with:

do(align-to(table), do(goto(table), S0))
In the Situation Calculus, relations and functions that may change their value from

situation to situation are called fluent, while relations and functions that do not change
are called rigid.
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In the following, we introduce the language Lsitcalc as defined by Pirri & Reiter [68].
For a more detailed introduction, we refer to [45].

2.2.1 The Language Lsitcalc

The language Lsitcalc is second-order language with equality. It is a sorted logic with the
three sorts action, situation, and object. It has the following alphabet:

1. countably infinitely many individual variable symbols of each sort:

a1, a2, . . . , s1, s2, . . . , o1, o2, . . .

2. a constant symbol S0 of sort situation, which denotes the initial situation;

3. a binary function symbol do : action × situation → situation, where do(a, s)
denotes the successor situation resulting from performing action a in situation s;

4. a binary predicate symbol Poss : action × situation, where Poss(a, s) describes
that it is possible to perform the action a in situation s;

5. for each n ≥ 0, rigid predicate symbols of arity n and sorts (action ∪ object)n to
denote situation-independent relations;

6. for each n ≥ 0, rigid function symbols of arity n and sort (action∪object)n → object
to denote situation-independent functions;

7. for each n, predicate symbols with arity n+1 and sorts (action∪object)n×situation
to denote relations that depend on the current situation. As the truth value of these
predicates may change from situation to situation, they are also called relational
fluents;

8. for each n, function symbols of sort (action∪object)n× situation → action∪object
to denote functions that depend on the situation. As the value of these functions
may change from situation to situation, they are also called functional fluents.

Furthermore, Lsitcalc uses the standard logical symbols ∧,¬,∃ with the usual defini-
tions.

2.2.2 Basic Action Theories
A basic action theory is a set of axioms that describe a particular domain. It defines
possible situations, action preconditions and effects, and the initial situation S0. In
the Situation Calculus, it also includes foundational axioms such as the unique-name
axioms, and axioms that fix certain properties of situations, e.g., that situations are finite
sequences of actions. Additionally, a basic action theory also incorporates a solution to
the frame problem as proposed by Reiter [71]. The frame problem states that if we
define the effects of an action, we cannot only specify which fluents are changed by the
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action, but we also need to specify all fluents that do not change. Axioms that specify
the action invariants are called frame axioms. Reiter’s solution to the frame problem is
to make a completeness assumption, i.e., the conditions characterized in the basic action
theory are the only conditions under which an action may cause a fluent to change.

We first define action precondition axioms and successor state axioms, and then define
a basic action theory using those axioms.

Definition 2.2.1 (Action Precondition Axiom [45]).
An action precondition axiom is a sentence of the form:

Poss(A(~x), s) ≡ ΠA(~x, s)

where A is an action function symbol, and ΠA(~x, s) is a formula that is uniform in s and
whose free variables are among ~x, s.

As an example, the action precondition axiom of the goto action shown in Listing 2.1
can be formulated as:

Poss(goto(to), s) ≡ ¬robot-at(to, s) ∧ ¬∃l aligned(l, s)

Definition 2.2.2 (Successor State Axiom [45]).
1. A successor state axiom for a relational fluent F is a sentence of Lsitcalc of the

form:
F (~x, do(a, s)) ≡ ΦF (~x, a, s)

where ΦF (~x, a, s) is a formula uniform in s, all of whose free variables are among
a, s, ~x. Following Reiter’s solution to the frame problem, ΦF (~x, a, s) has the fol-
lowing form:

ΦF (~x, a, s) ≡ γ+
F (~x, a, s) ∨ F (~x, s) ∧ ¬γ−F (~x, a, s)

The relational fluent F (~x) is true iff performing action a in situation s makes the
fluent true (γ+

F (~x, a, s)) or if the fluent was true in situation s (F (~x, s)) and per-
forming action a in situation s does not change the fluent to be false (¬γ−F (~x, a, s)).

2. A successor state axiom for a functional fluent f is a sentence of Lsitcalc of the form

f(~x, do(a, s)) = y ≡ φf (~x, y, a, s)

where φf (~x, y, a, s) is a formula uniform in s, all of whose free variables are among
~x, y, a, s. Again following Reiter’s solution to the frame problem, φf (~x, y, a, s) has
the following form:

φf (~x, y, a, s) ≡ γf (~x, y, a, s) ∨ f(~x, s) = y ∧ ¬∃y′. γf (~x, y′, a, s)

The functional fluent f(~x) has value y iff performing action a in situation s causes
the fluent to be changed to y (γf (~x, y, a, s)) or if the fluent had the value y in
situation s (f(~x, s) = y) and performing action a does not change the fluent value
to any other value (¬∃y′. γf (~x, y′, a, s)).
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As an example, assuming goto is the only action in our domain, the successor state
axiom for the fluent robot-at can be formulated as:

robot-at(l, do(a, s)) ≡ a = goto(l) ∨ robot-at(l, s) ∧ ¬∃l2. a = goto(l2)

Definition 2.2.3 (Basic Action Theory (Situation Calculus) [68]).
In the Situation Calculus, a basic action theory is a theory D of the form

D = Σ ∪ DSS ∪ Dap ∪ Duna ∪ DS0

where

• Σ are the foundational axioms for situations,

• DSS is a set of successor state axioms, one for each fluent of the language Lsitcalc,

• Dap is a set of action precondition axioms, one for each action function symbol of
the language Lsitcalc,

• Duna is a set of unique names axioms for all actions,

• DS0 is the initial database, i.e., S0 is the only term of sort situation mentioned by
the sentences of DS0 .

2.3 The Logic ES
The logic ES [43] is a modal logic for “reasoning about the knowledge, action, and
perception of an agent” [42]. It is a logical variant of the Situation Calculus. As the
Situation Calculus, it is based on the notion of situations. However, in contrast to the
Situation Calculus, situations do not appear as terms in the language. Instead, situations
are part of the semantics. As an example, the fact that the robot is in the kitchen after
doing action goto(kitchen) is expressed with [goto(kitchen)] at(kitchen). Since there are
no situation terms, there is also no sort situation. Additionally, the sorts object and
action are not distinguished.
ES is an epistemic logic, i.e., it allows to express the agent’s knowledge. However, in

the following, we will only describe the objective, non-epistemic subset of ES. We start
by defining the alphabet of the language LES , its terms and formulas, and then give a
short introduction into the semantics of ES. For more details, see [43, 42].

2.3.1 The Language LES
The language LES is a modal logic with the following alphabet [43]:

• countably infinitely many variable symbols

V = {x1, x2, . . . , y1, y2, . . . , z1, z2, . . . , a1, a2, . . .}
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• for each n ≥ 0, fluent predicate symbols of arity n: Fn = {fn1 , fn2 , . . .},

• a distinguished unary predicate symbol Poss, where Poss(a) describes that it is
possible to perform action a,

• for each n ≥ 0, rigid function symbols of arity n: Gn = {gn1 , gn2 , . . .},

• connectives and other symbols: =,∧,¬,∀,�, round and square parentheses, period,
comma.

Terms Using the alphabet above, we can describe the terms of the language. The terms
of LES are the least set such that:

1. Every first-order variable is a term.

2. If t1, . . . , tn are terms and g ∈ Gn, then g(t1, . . . , tn) is a term.

We denote the set of all ground terms with R. In contrast to the Situation Calculus,
there is no distinction between the sorts actions and objects, all terms are of the same
sort.

Formulas The well-formed formulas of LES of the language are the least set such that

1. If t1, . . . , tn are terms and F ∈ Fn, then F (t1, . . . , tn) is an atomic formula.

2. If t1 and t2 are terms, then (t1 = t2) is a formula.

3. If t is a term and α is a formula, then [t]α is a formula.

4. If α and β are formulas, then (α ∧ β), ¬α, ∀x. α, and �α are formulas.

2.3.2 Semantics of ES
In ES, models are called worlds. Intuitively, a world w determines which fluents are true
after any sequence of actions. As an example, w |= at(kitchen) expresses that the robot
is in the kitchen initially, and w |= [goto(hall)] at(hall) states that after doing action
goto(hall), the robot is in the hall. It follows a formal definition of a world and truth of
a formula α in a given world w.

Definition 2.3.1 (Semantics of objective ES [17]).
1. Let P denote the set of all pairs σ:ρ, where σ ∈ R∗ is a sequence of actions, and
ρ = F (r1, . . . , rn) is a ground fluent atom from Fn. A world is a mapping from P
to truth values {0, 1}.
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2. Given a world w, for any formula α with no free variables:

w, σ |= F (r1, . . . , rn) iff w [σ:F (r1, . . . , rn)] = 1
w, σ |= (r1 = r2) iff r1 and r2 are identical
w, σ |= (α ∧ β) iff w, σ |= α and w, σ |= β

w, σ |= ¬α iff w, σ 6|= α

w, σ |= ∀x. α iff w, σ |= αxr for every r ∈ R
w, σ |= [r]α iff w, σ · r |= α

w, σ |= �α iff w, σ · σ′ for every σ′ ∈ R∗

2.3.3 Basic Action Theories
As in the Situation Calculus, an ES basic action theory is a set of axioms describing a
particular domain. As before,

• Σ0 expresses what is initially true,

• Σpre is one large precondition axiom that defines for each action when it can be
performed,

• and Σpost is a set of successor state axioms, one per fluent, which incorporate
Reiter’s solution to the frame problem.

Since ES does not have an explicit notion of situations, no foundational axioms for
situations are necessary. It follows a formal definition of a basic action theory in ES.

Definition 2.3.2 (Basic Action Theory (ES) [43]).
Given a set of fluent predicates F , a set Σ ⊆ ES of sentences is called a basic action
theory over F iff Σ = Σ0 ∪ Σpre ∪ Σpost , where Σ mentions only fluents in F and

1. Σ0 is any set of fluent sentences,

2. Σpre is a singleton sentence of the form �Poss(a) ≡ π, where π is a fluent formula,

3. Σpost is a set of sentences of the form � [a] f(~x) ≡ γf , one for each fluent f ∈ F
and where γf is a fluent formula.

As an example, assuming goto is the only action in the domain, the precondition
axiom Σpre can be formulated as:

�Poss(a) ≡ ∃l. a = goto(l) ∧ ¬robot-at(l) ∧ ¬∃l. aligned(l)

Similarly, Σpost contains the following successor state axiom for the fluent robot-at:

� [a]robot-at(l) ≡ a = goto(l) ∨ robot-at(l) ∧ ¬∃l′. a = goto(l′)
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2.4 Declarative ADL Semantics
Claßen and Lakemeyer proposed a declarative semantics of ADL as progression in ES
[17]. They translate an ADL problem description into a basic action theory of ES, define
progression in ES, and show that the state-transitional semantics for ADL corresponds to
first-order progression in ES. We will use these semantics to formalize macro operators in
Chapter 4. In the following, we summarize Claßen and Lakemeyer’s ADL semantics. We
introduce ADL operators consisting of the operator’s parameters, precondition formula,
and effect formula and present how we can define an ADL problem description in ES.
We then summarize how an ADL problem description can be translated into a basic
action theory. We refer to [17] for a more detailed description and to [16] for an extension
to temporal PDDL.

2.4.1 ADL Operators
First, we describe how we can define ADL operators consisting of a precondition formula
and an effect formula in ES.

Definition 2.4.1 (ADL precondition formula).
An ADL precondition formula is an ES formula of the following form:

• An atomic formula F (~t) is a precondition formula if each of the ti is either a variable
or a constant.

• An equality atom (t1 = t2) is a precondition formula if each ti is a variable or a
constant.

• If φ1 and φ2 are precondition formulas, then so are φ1 ∧ φ2, ¬φ1, and ∀x:τ φ1.

The quantifier ∀x:τ stands for “all x of type τ”, where a type τ is a unary predicate
from F 1 and τ(x) means that object x has type τ . The quantifier ∀x:τ is defined as:

∀x:τ φ def= ∀x τ(x) ⊃ φ

Furthermore, we denote tuples of terms and types with vectors, e.g., ~t and ~τ . If ~τ
denotes τ1, . . . , τk, ~r denotes r1, . . . , rk and ~t denotes t1, . . . , tk, then we use the following
short-hand notations:

(~r = ~t) def= (r1 = t1) ∧ · · · ∧ (rk = tk)

~τ(~t) def= τ1(t1) ∧ · · · ∧ τk(tk)

We denote the free variables of type τ in a formula φ with Free(τ, φ).

Definition 2.4.2 (ADL effect formula).
An ADL effect formula is an ES formula of the following form:

• An atomic formula F (~t) is an effect formula if each of the ti is either a variable or
a constant.
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• A negated atomic formula ¬F (~t) is an effect formula if each of the ti is either a
variable or a constant.

• If ψ1 and ψ2 are effect formulas, then ψ1 ∧ ψ2 and ∀x:τ. ψ1 are effect formulas.

• If γ is a precondition formula and ψ is an effect formula not containing “⇒” and
“∀”, then γ ⇒ ψ is an effect formula.

Definition 2.4.3 (ADL operator: general form).
An ADL operator A is given by a triple (~y:~τ , πA, εA), where

• A is a symbol from Gp, where p is the number of parameters ~y of A,

• ~y:~τ is a list of variable symbols with associated types,

• πA is a precondition formula with free variables among ~y,

• and εA is an effect formula with free variables among ~y.

We also call ~y:~τ the parameters of operator A. As an example, consider again
the action goto from Listing 2.1. The ADL operator can be defined as the triple
(~y:~τ , πgoto, εgoto) with

~y:~τ = to:location
πgoto = ¬robot-at(l) ∧ ¬∃l′:location. aligned(l)
εgoto = robot-at(l) ∧ ∀l′:location. l 6= l′ ⇒ ¬robot-at(l′)

Definition 2.4.4 (ADL operator: normal form).
An ADL operator A is in normal form, if its effect εA is of the following form:∧

Fj

∀~xj :~τFj .
(
γ+
Fj ,A

(~xj)⇒ Fj(~xj)
)
∧

∧
Fj

∀~xj :~τFj .
(
γ−Fj ,A

(~xj)⇒ ¬Fj(~xj)
)

If an ADL operator is in normal form, then for each Fj , there is at most one conjunct
of the form · · · ⇒ Fj(~x) and also at most one conjunct of the form · · · ⇒ ¬Fj(~x).

2.4.2 ADL Problem Description
Using the definitions above, we can now describe how we can formulate an ADL problem
description in ES.

Definition 2.4.5 (ADL problem description).
A problem description for ADL is given by

1. a finite list of types τ1, . . . , τl,Object, where Object is a special type that must
always be included,
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2. a finite list of statements of the form

τi :
(
either τi1 . . . τiki

)
defining some of the types as compound types, where τi is the union of all τij and
ki is the number of sub-types of τi; a primitive type is a type other than Object
that does not occur on the left-hand side of such a definition,

3. a finite list of fluent predicates F1, . . . , Fn with a list of types τj1 , . . . τjkj
for each

Fj , which defines the types of the arguments of Fj ,

4. a finite list of objects with associated primitive types o1:τo1 , . . . , ok:τok
, where each

oi is a symbol from G0,

5. a finite list of ADL operators A1, . . . , Am in normal form, where each operator
only contains symbols from the operator’s parameters, and from (1), (3), and (4),

6. an initial state I that only contains symbols from (1), (3), and (4), and

7. a goal description G in form of a precondition formula, which only contains symbols
from (1), (3), and (4).

2.4.3 Basic Action Theories
Given an ADL problem description, a corresponding ES basic action theory can be
constructed as follows [17]:

Successor State Axioms Σpost A set of operator descriptions {A1, . . . , Am} can be
transformed into a set of successor state axioms Σpost . Let

γ+
Fj

def=
∨

γ+
Fj ,Ai

∈NF(Ai)

∃~yi. a = Ai(~yi) ∧ γ+
Fj ,Ai

γ−Fj

def=
∨

γ−
Fj ,Ai

∈NF(Ai)

∃~yi. a = Ai(~yi) ∧ γ−Fj ,Ai

where γ±Fj ,Ai
∈ NF(Ai) means that there only is a disjunct for Ai if there exists a γ±Fj ,Ai

in the normal form of Ai.
Using the definitions for γ±Fj ,Ai

, we can define the successor state axiom for Fj :

� [a]Fj(~xj) ≡ γ+
Fj
∧ ~τFj (~xj) ∨ Fj(~xj) ∧ ¬γ−Fj

The Precondition Axiom Σpre The precondition axiom π is a disjunction over all
operators of the problem domain:

π
def=

∨
1≤i≤m

∃~yi:~τi. a = Ai(~yi) ∧ πAi
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Initial Description Σ0 The initial description Σ0 encodes the information about the
initial state of the world and all information about the types of objects.

2.5 State-of-the-art PDDL Planners
In the following, we present the state-of-the-art PDDL planners FF and Fast Down-
ward, which are used as basic planning systems in this thesis. However, the implemen-
tation will mostly be independent of the underlying planning system. Therefore, the
planner should be easily substitutable.

2.5.1 Fast-Forward
Fast-Forward (FF) [34] is a heuristic planner which uses forward state space search.
Generally, in forward state space search, the planner starts in the initial state and
generates successor states by applying the effects of some applicable action. FF uses
a heuristic that estimates goal distances by ignoring delete lists. FF was originally
designed for the STRIPS subset of PDDL, but has been extended to ADL [34].

The Search Algorithm Enforced Hill-climbing is a variant of hill climbing which in-
spects not only neighbor states but also states which are more than one step away.
Since plateaus are usually fairly small in planning problems [34], the search usually finds
a successor quickly and outperforms normal hill-climbing. Enforced hill-climbing uses
breadth first search to find a state with a strictly better evaluation than the current
state. For the evaluation, it uses the heuristic described below.

The Heuristic FF uses an adapted version of GraphPlan [4] on the relaxed problem
as heuristic. In the relaxed problem, the delete lists of all actions are ignored. Graph-
Plan generates a directed, layered graph called planning graph which contains two kinds
of nodes: fact nodes and action nodes, and three kind of edges: precondition edges, add
edges, and delete edges. Each layer consists of one kind of node and is therefore called
fact layer or action layer, respectively. Fact layers and action layers alternate, one fact
layer and one action layer together are called a time step. In each time step i, we have
all facts which are possibly true after i time steps, and all actions which are possibly ap-
plicable after i time steps. Precondition edges are edges between fact nodes in time step
i− 1 and action nodes in time step i which have the corresponding fact as precondition.
Similarly, add edges and delete edges connect actions in time step i and their add and
delete effects in time step i+ 1, respectively.

GraphPlan runs in stages. In stage i, GraphPlan extends the planning graph from
stage i− 1 by adding an action level with all possible actions and a fact layer with the
actions’ effects. It then searches the planning graph for a valid plan recursively. Given
a set of goals at time t, it searches a set of actions at time t − 1 which has these goals
as effects. It then recursively searches a plan for the preconditions of these actions. If it
reaches the initial state, it succeeded and returns the partially ordered plan.
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Note that in the original GraphPlan algorithm, mutual exclusions play an important
role. Two actions are mutually exclusive if no valid plan can possibly contain both. Sim-
ilarly, two facts are mutually exclusive if no valid plan can possibly make both facts hold.
When searching for actions that achieve facts at time t, the planner cannot select any
action that is mutually exclusive to an already selected action. If no such action exists,
the planner must backtrack. However, FF uses GraphPlan on the relaxed problem.
Therefore, no mutual exclusions exist, and thus, GraphPlan will never backtrack on a
relaxed problem. For this reason, the procedure takes only polynomial time in the size
of the relaxed task.

Pruning Techniques In addition to the described search method, FF uses multiple
pruning techniques. For one, GraphPlan is extended to suggest helpful actions to the
search algorithm. In short, helpful actions are applicable actions which provide a goal
at the first time step, i.e., one of their effects is a goal in the first layer of the planning
graph. Additionally, FF cuts out branches from the search tree where some goal g is
achieved too early, i.e., other goals cannot be achieved without destroying g.

Completeness In general, the enforced hill-climbing search is incomplete. If it fails,
FF starts over and searches for a valid plan with a complete heuristic search algorithm.

Extension to ADL FF was originally designed for STRIPS but has been extended to
ADL. It preprocesses the ADL domain and task description by compiling the specified
task down into a propositional normal form. In short, everything except the conditional
effects are compiled away by the prepocessing step. The heuristic is adapted to deal with
the conditional effects by extending the planning graph with an additional effects layer.
Also, the adapted GraphPlan algorithm selects achieving effects instead of achieving
actions. Finally, the pruning techniques are adapted to ADL.

2.5.2 Fast Downward
Fast Downward (FD) [32] is a classical PDDL planner, which supports all features
of propositional PDDL2.1, and thus supports ADL. It uses a heuristic forward search
and hierarchical problem decomposition. It is based on the PDDL planner FF (cf.,
Section 2.5.1), but uses the causal graph heuristic.

The Causal Graph Heuristic A fluent v of the domain is said to have a causal de-
pendency on another fluent w, if there is an action with a precondition on w changing
the value of v, or if there is an action which has an effect on both v and w. In the
example in Figure 2.1, holding product1 depends on robot position, because the
robot has to be at the same location as the workpiece in order to be able to pick it up.
product1 position and holding product1 depend on each other because they are both
changed by the pick up action. The problem is hierarchically split up in sub-problems,
which contain a single variable and the variable’s predecessors in the causal graph. If
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robot position

product1 position product2 position

holding product1 holding product2

Figure 2.1: Part of the causal graph for the RCLL. In this graph, the products’ positions
and the robot position have been converted to multi-valued fluents.

the causal graph of a problem is cyclic, the heuristic ignores some causal dependencies,
making the graph acyclic.

The causal graph of propositional domains, where fluents can only have the values
true or false, is often quite complex. In order to simplify the causal graph, Fast Down-
ward first converts the planning task to a multi-valued planning task.

The Search Fast Downward uses several search algorithms. It can use a greedy best-
first search algorithm with the causal graph heuristic, splitting up the problem recursively
into smaller sub-problems, starting from the goal variables. Second, it supports a multi-
heuristic best-first search, where it combines multiple heuristics, namely the causal graph
heuristic and the FF heuristics (cf., Section 2.5.1). Third, it can use a focused iterative-
broadening search without heuristics, which uses the causal graph to reduce the number
of operators it considers.

2.5.3 PDDL Planners in DBMP
We will use FF and Fast Downward as planners in DBMP. In particular, we will use
Fast Downward for generating seed plans and FF for solving problems with macro-
augmented domains. We use Fast Downward in a configuration that is optimized for
plan length and not for planning time. Thus, Fast Downward takes longer to plan
but finds shorter and better plans. Since the seed plans are better, the generated macros
potentially also consist of more useful actions. On the other hand, FF typically finds
a solution faster. Thus, when planning a problem with the augmented domain, we use
FF to find a solution quickly. However, as the implementation is independent of the
planners used, we can swap FF and Fast Downward with any PDDL planner.

We continue by introducing the RCLL as an example for a robotics domain.

2.6 RoboCup Logistics League
The RoboCup Logistics League (RCLL) [64] is an industry-oriented competition and
part of RoboCup [41], an international initiative to advance intelligent robotics research
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by means of robot competitions. The focus of the RCLL is a current industry trend
from mass production towards customized products which requires the factory to adapt
to dynamic demands and thus demands a more dynamic production and the use of
cyber-physical systems [64]. In the RCLL, a team of robots has to “plan, execute, and
optimize the material flow in a smart factory scenario and deliver products according
to dynamic orders” [57]. Each team can use up to three robots. The goal is to produce
complex products consisting of a base (red, black, or silver), zero to three colored rings
(blue, green, orange, or yellow), and a cap (black or gray). In order to produce a product,
each team has an exclusive set of six static Modular Production Systems (MPS). Each
MPS is responsible for a specific manufacturing task: a base station produces bases, a
ring station mounts colored rings on a workpiece, a cap station mounts the final cap on
a product, and a delivery station is the collection point for finished products. In order
to accomplish a manufacturing step, the robots have to transport the semi-finished
product to the correct MPS. After all parts have been assembled, the product needs to
be delivered to the delivery station. Product orders are created dynamically, the robots
need to react to the dynamic orders fully autonomously, i.e., no interference by human
team members is allowed.

In a game, two teams share the 12m × 6m field. The game is controlled by an au-
tonomous referee box [63], a software component which communicates with the machines
and each team’s robots, manages the current game phase, and keeps track of the team
scores. The game is split in two phases, the exploration phase and the production phase.
In the exploration phase, each team has to explore the game field and detect and identify
their machines and report them to the referee box. In the production phase, the referee
box creates orders in a randomized fashion. An order consists of the configuration of the
requested product, the number of requested products, and the time window in which
the product is to be delivered. Points are assigned when a team delivers a product
successfully, more complex products give more points.

The RCLL has been suggested as a benchmark domain for planning with the following
characterization [57]:

Cooperative and Competitive: Robots of the same team must cooperate and each team
is competing against another team on the same field.

Partially Observable: The robots can only observe parts of the relevant aspect of the
world, e.g., a robot can only see parts of the field.

Non-Deterministic: A robot’s action is non-deterministic as it may fail for various
reasons, e.g., a failed grasping action. An action is typically not stochastic be-
cause there is no known probability distribution over action outcomes. Similarly,
a robot’s sensors are non-deterministic and not stochastic.

Sequential: A robot’s decision influences the remainder of the game; actions cannot be
seen as independent, atomic episodes.

Dynamic: While an agent is reasoning, the world may change as there are multiple,
independently acting robots of different teams.
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Continuous/Discrete: Time and a robot’s motion and position are continuous, but a
discrete representation is possible.

Known: An action’s possible outcomes are known (but it may still be non-deterministic).

The RCLL is of medium complexity and allows both local-scope and global-scope plan-
ning. Current agent systems typically follow an incremental strategy [56, 57], meaning
that they incrementally extend the plan during execution. Using a longer planning hori-
zon or even a complete plan (i.e., a full plan towards a final goal) may lead to better
results. Furthermore, current systems usually take a distributed approach because robot
coordination is complex. A centralized approach can exploit additional efficiencies such
as two robots cooperating to produce one product. Therefore, an agent system based on
planning may improve the game performance and it allows the comparison of distributed
and centralized approaches. Due to the dynamic properties of the domain, many differ-
ent problem instances are possible. Thus, the RCLL is a suitable benchmark domain for
planning. We will use it as a benchmark domain for our approach to macro planning.

2.7 Fawkes
Fawkes1 is a component-based, open-source robot software framework [62]. It provides
the following key features:

Component-Based A component based software framework consists of a number of
executable units which provide services through well-defined interfaces [38]. In Fawkes,
components are implemented through a plugin mechanism. In general, one plugin cor-
responds to one component. Every plugin is implemented as a dynamically loadable
library. Therefore, plugins can be loaded and unloaded during run-time. Plugin runs
in a separate POSIX threads and one plugin may consist of several threads. All plu-
gin threads are managed by Fawkes. Fawkes threads borrow from the aspect-oriented
design pattern, where certain predefined functionalities such as configuration, logging,
blackboard access and camera access are provided by aspects, each aspect providing one
functionality. Fawkes threads run in one of two different modes: In wait-for-wakeup
mode, the thread blocks until it is woken up and then runs one iteration before blocking
again. In continuous mode, the thread runs continuously in the background until it exits
or is terminated. Usually, the continuous mode is used for threads which are blocked
most of the time, such as a camera access thread, or threads with a high frequency loop,
such as a motor controller thread. Fawkes provides a default implementation for the
main loop which represents a sense-think-act cycle which is divided into stages. Threads
can register for a stage and are woken up in every cycle when the main thread reaches
that stage. Fawkes’ multi-threading concept provides efficient synchronization between
threads while exploiting the system’s resources, especially on multi-core systems.

1https://www.fawkesrobotics.org

https://www.fawkesrobotics.org
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Blackboard Fawkes uses a hybrid blackboard/messaging infrastructure with well-defined
interfaces. Fawkes’ blackboard resembles the blackboard design pattern with the adap-
tion that only a single writer is allowed for each data set. Thus, each component shares
data with other components by writing the data to the blackboard. Other components
can read from the blackboard and process this data. Additionally, reading components
can send messages to the writing component, and can therefore send requests or com-
mands to the writing component. Fawkes also provides a network infrastructure for
communication, which is able to synchronize blackboard data, thereby allowing a dis-
tributed design.

Vision · · ·

AMCL Motion Components
Actuator/Sensor proc.
Localization, etc.

Behavior Engine Reactive Behaviors
Skill execution/monitoring

Agent Deliberation
Decision making/planning

Figure 2.2: The behavior layer separation in Fawkes. Adapted from [56].

Behavior Engine Fawkes provides a three-layered hierarchy for high-level decision mak-
ing as shown in Figure 2.2. In the lowest layer, multiple components provide access to
the hardware and basic functionality such as driving, arm control and object detection.
In the highest layer, Fawkes provides the possibility to integrate high-level agent for-
malisms such as CLIPS [56], Golog [44], IndiGolog [22], and PRS [60]. A Lua-based
Behavior Engine [55] fills the gap between those layers as a middle layer. The Behavior
Engine defines a set of skills, which are formalized as extended Hybrid State Machines.
Each skill has a well-defined purpose, such as moving to a certain location, or picking
up a specific object. Skills can call subskills, but a skill cannot decide to switch to a
different skill. Thus, a skill only makes local decisions. Therefore, skills provide the
necessary abstraction of the lowest layer and can be used by the high-level agent as
primitive actions.

Fawkes in the RCLL Fawkes has also successfully been used in the RoboCup Logistics
League by the team Carologistics [59]. In comparison to other approaches, Fawkes is
more complex but also more easily adaptable to changing tasks, as the successes in the
RCLL have shown in the recent years [61]. For the RCLL, Fawkes has been integrated
with the rule-based production system CLIPS [78], which is used to implement high-level
reasoning, task coordination, and execution monitoring [56]. This system can also be
adapted to execute plans that were computed by a PDDL planner [46].
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2.8 Databases
We use a database to store and analyze previous planning results. In the following, we
introduce relevant database techniques in robotics and summarize the concept of the
MapReduce programming technique.

2.8.1 Generic Robot Database
The Generic Robot Database [58] is a MongoDB database used to record data produced
during run-time such as sensor outputs and the results of decision making procedures.
This data can be used later, e.g., for fault analysis, performance analysis, and reinforce-
ment learning. Collecting the data for later analysis avoids the additional cost of on-line
analysis, as any analysis can be done later off-line. The data is collected from robot mid-
dleware, more specifically from the open-source robot operating system ROS [69] and
the open-source robot software framework Fawkes [62]. The Generic Robot Database
uses MongoDB because

1. it is document-oriented and therefore allows a direct mapping to typical message
formats in robotics and supports complex queries on any document fields,

2. it is schema-less and thus allows changes to the data structure, which is common
in fast changing robotics applications,

3. it supports indexing and MapReduce to allow complex queries and data processing,

4. it is a highly scalable database with replication and sharding support, and

5. it supports capped collections that automatically delete old data when a storage
threshold is reached.

2.8.2 Robot Memory
Apart from storing data for off-line analysis, an agent system also needs to be able
to memorize observations, gain knowledge, and share this knowledge with other agents
during run-time, i.e., it needs a robot memory [81]. Such a robot memory can be used
to represent and share the current world state, which can be used as input for a PDDL
planner. Furthermore, such a robot memory can also be used as a plan database for
previously computed plans. In our approach, we will use the robot memory to integrate
our planner with the existing system to execute plans of the RCLL domain. However,
using the robot memory as a plan database is not in the scope of this thesis. Instead,
we will operate directly on MongoDB.

2.8.3 MapReduce
MapReduce [23] is a programming technique to process and generate large datasets.
MapReduce takes a set of input key-value pairs and produces a set of output key-value
pairs. The central idea of MapReduce is to split the operation into two steps:
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1. Map takes one input pair and produces a set of intermediate key-value pairs.

2. Reduce takes an intermediate key and a set of values for that key. It merges the
values to produce a set of values that is usually smaller than the intermediate set.

Listing 2.3: Counting word occurrences in a set of documents, adapted from [23].
1 def map(key, document):
2 for word w in document:
3 emit(w, 1)
4

5 def reduce(key, values):
6 result = 0
7 for v in values:
8 result += v
9 return result

Listing 2.3 shows how to count words in a collection of documents with MapReduce.
In the map function, we iterate over one document and emit a document for each word
in the document in line 3. The key of the emitted document is the word itself, the value
is the count 1. In the reduce function, we obtain a list of documents with the same key,
i.e., they share the same word. We sum over all counts of those documents to obtain
the total number of occurrences for each word.

We use MapReduce to identify frequent action sequences in all plans in the database.

2.9 Cloud Computing, Virtualization and Containerization
In the following, we give an overview of cloud computing techniques, in particular over
virtualization and containerization, which we can use for a scalable setup to generate
seed plans and to run benchmarks. We introduce virtualization in general, present Xen
as one example for virtualization, and then compare virtualization to containerization.
Afterwards, we summarize the concepts of the cluster manager Kubernetes and the IT
automation tool Ansible. We use both tools for managing a local cluster setup. Finally,
we explain how containerization can improve the reproducibility of research.

2.9.1 Cloud Computing
The National Institute of Standards and Technology (NIST) defines cloud computing as
“a model for enabling convenient, on-demand network access to a shared pool of config-
urable computing resources (e.g., networks, servers, storage, applications, and services)
that can be rapidly provisioned and released with minimal management effort or service
provider interaction” [80].
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According to Zhang, Cheng, and Boutaba [80], the architecture of a cloud computing
environment consists of four layers:

Hardware Layer This layer manages the physical resources, in particular the physical
servers, and is usually implemented in a data center, which commonly contains
thousands of servers.

Infrastructure Layer The infrastructure layer partitions the physical resources using vir-
tualization technologies and is responsible for dynamic resource assignment.

Platform Layer The platform layer builds on top of the infrastructure layer and consists
of operating systems and application frameworks.

Application Layer The application layer contains the actual application.

Zhang, Cheng, and Boutaba also distinguish three types of clouds.

Public clouds A public cloud is managed by a service provider. Resources in a public
cloud can be rented on demand. Thus, a public cloud offers the most flexibility as
no initial investment is necessary, and it shifts the risk of operating the cloud to
the service provider.

Private clouds A private cloud is an internal cloud that is designed for exclusive use
by a single organization. A private cloud offers more control over performance,
reliability, and security.

Hybrid clouds A hybrid cloud combines a public cloud and a private cloud to address
the limitations of each approach.

Our setup, where we use lab machines to set up a local cluster, can be considered to be
a small-scale private cloud.

2.9.2 Virtualization
All modern cloud setups such as Google’s App Engine and Amazon’s Elastic Compute
Cloud (EC2) use virtualization for their infrastructure [73]. In such a setup, the hardware
is virtualized and only the virtualized hardware is exposed to the guest operating system.
Virtualized hosts are managed by a hypervisor, which takes care of the host resources,
runs virtual machines on the host, and provides isolation and portability. Scheepers
distinguishes two types of virtualization [73]:

Full Virtualization The hardware is fully virtualized and the guest operating system
cannot distinguish the virtual machine to a bare-metal machine. Thus, no modifi-
cations to the guest operating system are required.

Para Virtualization Instead of fully virtualizing the hardware of the machine, only parts
of the machine are virtualized, and the guest operating system’s software is adapted
to deal with the virtualized hardware.
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Xen One example for para-virtualization is Xen [1]. Xen is an x86 virtual machine mon-
itor, which is capable of running Linux, Windows, and FreeBSD. Xen is para-virtualized,
because it allows direct access to the host’s hardware for certain operations such as sys-
tem calls, but provides virtualized hardware for other operations such as interrupts. It
modifies the kernel of the guest operating system to deal with para-virtualized instruc-
tions. Other than those kernel modifications, no modifications of the guest operating
system are necessary. In particular, guest applications can be executed without modifi-
cations. In comparison to other virtualization techniques, Xen has a low virtualization
overhead, which allows to run approximately 100 virtual machines on a single host.

2.9.3 Containerization
A recent alternative to full virtualization and para-virtualization is container-based vir-
tualization. The fundamental technology for container-based virtualization are Linux
Containers (LXC), which provide “lightweight operating system virtualization” [73]. In-
stead of virtualizing hardware, LXC uses Linux kernel features such as cgroups and
namespaces to isolate processes and manage resources. Each process runs with the same
kernel in an isolated environment, which reduces the overhead significantly, but still
separates the process from other processes [73]. In particular, there is no need for the
host to run its own kernel [40]. On a traditional hypervisor, all the multiple kernels
running in the guest operating systems use a large fraction of the machine’s physical
resources. Instead, a container only consists of the necessary binaries, libraries, and
applications, it does not contain a complete operating system. Thus, a container is
much leaner than a virtual machine and a single host can run hundreds to thousands
of containers. A comparison of virtualization and containerization architectures can be
seen in Figure 2.3.

Docker Docker [76] is the most common container software and provides tooling to
conveniently create and manage LXC containers. In the following, we give a short
introduction in the fundamental components of Docker. For a more complete reference,
see [74].

A Docker image is a binary image which contains all the necessary software to run
one specific application and is comparable to an image of a virtual machine for classical
virtualization. Docker images are layered: While building the image, each step forms
an additional layer on top of the previous layer. The lowest layer always provides basic
system libraries which are used by the application. On top of this layer, the application’s
dependencies, its libraries, and finally its binaries are added. Since the image only
contains the libraries and binaries necessary to run one particular application, a Docker
image is much smaller than a typical virtual machine image. Furthermore, each layer
only needs to be stored once. Thus, if multiple images share the same layers (e.g., a
Python interpreter), then this layer is shared among the different images, which greatly
reduces the storage requirements.

Each Docker image is created from a Dockerfile, which is a text script similar to a
Makefile. A Dockerfile describes each step of creating a Docker image and contains
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(a) Virtualization architecture (b) Docker architecture

Figure 2.3: A Comparison between the architectures of a virtual machine and a Docker
container [76]. While both architectures contain a separation layer between
host and guest (hypervisor and Docker Engine), a virtual machine addition-
ally contains a complete operating system. In contrast, a Docker container
only contains the relevant binaries, libraries, and applications.

commands such as COPY, which copies a local file from the host into the image, and RUN,
which runs an arbitrary command within the image. Listing 2.4 is an example for a
Dockerfile which installs the planners used in this thesis into a base Fedora image and
then copies a local worker script into the container.

Note that the result of building a Docker image from a Dockerfile does not always result
in the same image. This is because the result of running commands in the Dockerfile may
be different. As an example, if Fast Downward was updated in the repositories, then
the resulting image will contain the newer version. However, once an image has been
built, it will always contain the same files and thus the same versions of the software.

Docker images are stored in registries. There are two types of registries: public reg-
istries, where everyone can access the stored images, and private registries, which contain
images that are not intended for public use. Docker Hub2 is the biggest public registry
and provides images for many common software applications.

A Docker container is a running instance of a Docker image. When starting a con-
tainer, an additional layer is created that contains any file modifications that happen
during runtime. Multiple containers can be created from one image, each of those con-
tainers runs independently; any modifications are only applied on the additional layer
and are not propagated to the other containers running the same image. It is common
practice to keep a Docker container stateless so it can easily be destroyed and re-created.
To keep a container stateless, its permanent data must be stored separately. For this
purpose, Docker provides data volumes, which are virtual file system devices that are
mounted into the container during initialization. Data volumes can be shared between

2https://hub.docker.com

https://hub.docker.com
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Listing 2.4: A Dockerfile for a cluster worker. This installs the four planners FF, Fast
Downward, Macro-FF and Marvin from a Fedora Cool Other Package
Repo (COPR) and then copies the local worker.py file into the Docker
image.

1 FROM fedora:24
2 MAINTAINER Till Hofmann <hofmann@kbsg.rwth-aachen.de>
3 RUN dnf -y --refresh install "dnf-command(copr)" && \
4 dnf -y copr enable thofmann/planner && \
5 dnf -y --refresh install \
6 fast-downward \
7 fast-forward \
8 macroff \
9 marvin \

10 && \
11 dnf clean all
12 COPY worker.py /usr/bin/

containers and persist even if the container is destroyed. Alternatively, data can be
stored in a database.

2.9.4 Cluster Management with Kubernetes
Kubernetes [77] is an “open-source cluster manager for Docker containers” [3]. Ku-
bernetes allows to define high-level tasks, services, and jobs which abstract from the
application containers and decouple the application from the system on which they run.
It does so by managing running containers, automatically restarting failed containers,
distributing new containers in the cluster to balance the load, and by providing virtual
networking, data management and management of secrets such as passwords and certifi-
cates for the cluster. As a result, the container becomes independent of the particular
host it runs on. The developer does not start containers manually, but instead defines
services that specify the containers to run, which data volumes and secrets these con-
tainers can access, and whether the service should be scaled. Containers are grouped
into pods, which contain several application containers that are tightly coupled.

Additionally, Kubernetes allows the definition of jobs. In the most general term, a
job creates a number of pods and guarantees that they successfully terminate. Jobs are
typically used if there are a number of one-time tasks that need to be done without a par-
ticular order. Kubernetes automatically manages the job queue and allocates resources
accordingly. The job definition includes a resource specification. Kubernetes only sched-
ules the creation of a pod if the required resources are available. Thus, a pod is always
guaranteed to have the same resources available. If those resources are exceeded, the
pod is automatically terminated. Therefore, Kubernetes jobs offer an excellent platform
for reproducible benchmarks of planning tasks: Each task has the same CPU share and
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amount of memory available. If the task takes too long or uses too much memory, it is
automatically killed. Listing 2.5 shows the Kubernetes job definition which we use to
start planning tasks.

Listing 2.5: A Kubernetes job definition for a planning task. Starting in line 12, the con-
tainer of this job is specified: The container runs the image morxa/planner
and starts the script worker.py with the arguments blocksworld and p1.

1 apiVersion: batch/v1
2 kind: Job
3 metadata:
4 name: planner-ff-blocksworld-p1
5 labels:
6 jobgroup: planning-tasks
7 spec:
8 template:
9 metadata:

10 name: planner-worker
11 spec:
12 containers:
13 - name: planner-worker
14 image: morxa/planner
15 command: ["worker.py"]
16 args: ["blocksworld", "p1"]
17 resources:
18 requests:
19 cpu: "1"
20 memory: "4G"
21 limits:
22 cpu: "1"
23 memory: "5G"
24 restartPolicy: OnFailure

2.9.5 Using Ansible for IT Automation
Ansible3 is an open-source IT automation tool aims to replace existing configuration
management systems, deployment systems, orchestration projects, and provisioning tools
[33] while keeping it as simple as possible. It is capable of doing the following tasks:

Configuration management Configuration management is the task to enforce some kind
of state description for a number of servers, e.g., installing packages, making sure
that configuration files contain expected values, and starting and stopping services.

3https://www.ansible.com/

https://www.ansible.com/
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Deployment Deployment is the process of “taking software that was written in-house,
generating binaries or static assets (if necessary), copying the required files to the
server(s), and then starting up the services” [33].

Orchestration In a typical environment with multiple servers, actions have to be taken
in a specific order, e.g., the database has to be started before bringing up the web
server.

Provisioning In the context of public clouds (cf., Section 2.9.1), provisioning is the task
of creating new instances and managing existing instances of virtual machines.

Ansible uses a domain-specific language (DSL) based on YAML [2]. Ansible aims to
be idempotent. In the context of configuration management tools, idempotent means
that running the same task multiple times results in the same state as running a task a
single time, i.e., if the system is already in the desired state, running the task will not
cause any changes to the system.

In Ansible, a cluster configuration is typically split up in several playbooks. A playbook
is a configuration management script that usually executes one task such as setting up a
Kubernetes cluster. Each playbook may assign multiple roles to hosts. As an example,
the Kubernetes playbook assigns the roles kubernetes-master and kubernetes-node
to the hosts in the cluster. Each role definition consists of multiple tasks that need to
be run in order to set up the role, e.g., one task is installing Kubernetes on the machine.
Listing 2.6 shows an example for a simplified kubernetes-master role.

Listing 2.6: An Ansible script that installs, configures, and starts Kubernetes.
1 - name: install kubernetes
2 dnf: name=kubernetes state=latest
3 - name: add kubernetes config
4 template:
5 src: etc-kubernetes-config.j2
6 dest: /etc/kubernetes/config
7 backup: yes
8 - name: start kube-apiserver
9 service:

10 name: kube-apiserver
11 enabled: yes
12 state: started

We will use Ansible to set up Kubernetes, the plan database, and all other components
required to run DBMP.
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2.9.6 Using Containers for Reproducible Research
In addition to efficient virtualization and easy scalability, containers can also improve
the reproducibility of research, which is often a difficult task [5]. Boettiger says that
“crucial scientific processes such as replicating the results, extending the approach or
testing the conclusions in other contexts, or even merely installing the software used by
the original researchers can become immensely time-consuming if not impossible” [5].
He identifies three major technical challenges:

Dependency hell Installing the software dependencies of one particular application is
often difficult or even impossible. Different versions of the same software may
produce different results.

Imprecise documentation Documentation how to install and run software often lacks
the necessary quality and hinder reproducibility by other researchers.

Code rot Dependencies receive software updates which may break the application or
change the results.

Containerization offers a solution to all these challenges:

1. Dependency hell: In a Docker image, all libraries and binaries are already installed
such that the software can be run out-of-the-box.

2. Imprecise documentation: Dockerfiles make the paradigm shift from explaining
each step to providing a script that automatically creates the image. This shift is
part of a “recently emphasized philosophy” [5] known as Development and Systems
Operations (DevOps).

3. Code rot: A Docker image is a binary image which can be easily stored and archived
for later re-use. Docker also offers image versioning and a central platform for
sharing images (cf., Section 2.9.3).

By using containerized software and Ansible for IT automation, we aim to simplify
the setup and usage of DBMP, so other researchers can easily use our planning software
and verify the results.
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We describe related macro planning approaches and their differences to DBMP.

3.1 STRIPS with Generalized Plans
The planner STRIPS has been extended to use macros in the form of generalized plans
[25]. A generalized plan is a (partial) solution to a previous planning problem, where
constants are substituted by parameters and the resulting parameterized plan is used as
a macro operator for further planning problems.

To compute a generalized plan, the proposed algorithm first computes for each of the
plan’s operator all the effects in the add list that survive the subsequent operators. In
order to do this, it utilizes a triangle table as shown in Table 3.1. The first column
contains in the i-th row the precondition of the i-th operator. All other columns contain
the atoms from the operator’s add list (Ai), and Ai/j denotes the atoms from i-th add
list that are not destroyed by operator j. Thus, the last row contains the effects of the
macro operator and the first row contains the macro’s preconditions.

Starting with the triangle table for a particular plan, the algorithm now generalizes by
replacing constants with parameters in the triangle table. While doing so, the validity
of the resulting macro has to be retained. For the details of this procedure, see [25].

As the algorithm is an extension to STRIPS, it only works on STRIPS domains.
Furthermore, it does not store the resulting operators as regular STRIPS operator but
as a special MACROP. Thus, macros are dependent on the planner and cannot be used by
other planners. Finally, each macro is generated from a single plan, and therefore the
general applicability of the macro is unknown. In contrast, our approach is independent
of the planner and generates macro candidates by analyzing a large database of previous
plans. Thus, the resulting macros are generally applicable.

Preconditions OP 1 OP 2 OP 3 OP 4
PC 1
PC 2 A1
PC 3 A1/2 A2
PC 4 A1/2,3 A2/3 A3
PC 5 A1/2,3,4 A2/3,4 A3/4 A4

Table 3.1: A triangle table, adapted from [25].
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3.2 Reflect
The planner Reflect [21] is another macro planner that operates on STRIPS-like do-
mains. In contrast to the macro extension of STRIPS, Reflect does not generate
macros from previous planning results (MACROPs), but instead generates macro opera-
tions (BIGOPs) by analyzing the domain during the preprocessing phase. Thus, a BIGOP
uses intrinsic properties of the domain rather than previous planning results and is there-
fore independent of particular problem instances. In Reflect, macros are generated as
follows: First, Reflect computes all pairs of operators that can be applied successively.
Then, any pair which does not have a common variable is removed from the macro set.
Finally, any macro which would be a no-op is pruned. The remaining operator pairs are
used as macro operators.

In contrast to Reflect, our approach generates macros from previous plans. While
Reflect generates macros during preprocessing, our approach generates macros off-line.
Reflect is limited to a STRIPS-like language and does not support ADL.

3.3 Macro-FF
The PDDL planner Macro-FF [7, 6] uses two different approaches to macro planning:
Component Abstraction-Enhanced Domains (CA-ED) and a Solution-Enhanced Planner
(SOL-EP).

With CA-ED, the original domain is augmented with additional actions generated
from the macros, such that the planner can treat the macro as if it were a primitive ac-
tion. This has the advantage that the planner can be easily substituted as no adaptions
to the planner are required. Macro actions are generated statically during the prepro-
cessing phase by using component abstraction, a “technique that exploits permanent
relationships between two low-level features of a problem” [7]. Macro candidates are
filtered heuristically to generate only macro actions that are likely to be useful. CA-ED
macro planning is restricted to STRIPS domains.

The second approach SOL-EP allows full ADL domains, but the planner needs to be
adapted. A macro is represented as a sequence of actions and a mapping of the macro’s
variables. The preconditions and effects of a macro are not explicitly computed. Instead,
the planner checks if the macro is applicable during search. Macros are extracted from
solutions of training problems of the same domain and are limited to action sequences
of length 2. There are two reasons why SOL-EP does not represent macros as normal
actions: For one, there is “no straight-forward way to generate a macro’s formulas” [7]
for its preconditions and effects for full ADL macros. Second, the generated macros tend
to have a high number of parameters. Since most planners generate all possible instanti-
ations of an action during search, using macros with many parameters will decrease the
performance of the planner.

The performance gain with macros can be described with two improvements: the
embedding improvement and the evaluation improvement [7]. The embedding improve-
ment is exploited if macros augment the search space by adding successor states which
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otherwise wouldn’t be reachable with one step from a particular state. The evaluation
improvement is exploited if macros improve the heuristic evaluation of a state. As an
example, this is used in FF if macros are also used for the relaxed problem, where the
delete effects of all actions are ignored.

In the CA-ED approach, both improvements are used because macros are equivalent
to normal actions in the augmented domain. In the SOL-EP approach, the planner
needs to be adapted for each improvement separately. In Macro-FF’s SOL-EP, only
the embedding improvement is implemented.

Our approach differs from Macro-FF’s SOL-EP in the way that it represents a macro
as regular PDDL action, and thereby removes the need to adapt the underlying planner.
Furthermore, we support macros of length greater than 2. Similar to SOL-EP but
different to CA-ED, our macros are generated from previous solutions. In contrast
to SOL-EP, we do not use special training problems for that purpose, but instead re-
use results from previous planner calls. Our approach exploits both the embedding
improvement and the evaluation improvement. We approach the identified problems
of full ADL macros by (1) defining regression on ADL action sequences to compute a
macro’s precondition and effect chaining of sequences of effects to define a macro’s effect
formula, (2) coalescing parameters that are commonly assigned to the same value.

3.4 Marvin
The PDDL planner Marvin [19, 18] is another macro planner based on FF. Marvin
supports ADL domains with some restrictions, e.g., it does not support disjunctive
goals. It is designed based on the observation that escaping plateaus in the search
space is often the most time consuming part during planning. A plateau occurs if the
heuristic value of all successor states is the same as or worse than the heuristic value of
the current state. Plateaus are difficult for planners because the search degenerates to
blind search and it often takes a long time to find an action sequence that escapes the
plateau. Marvin is based on the observation that for a particular domain, it is often the
same action sequence that escapes the plateau. Thus, remembering and re-using such
action sequences can lead to significant performance gains. Marvin only applies macros
if a plateau is encountered. Macros are generated online and only from action sequences
that escape plateaus. Furthermore, macros are generated on a per-problem basis and
are not re-used for other problems.

In contrast to Marvin, in our approach macros are always used and are not limited to
plateaus. Furthermore, macros are generated off-line and can be re-used for new problem
instances. Finally, in our approach, no adaption of the planner is needed. In Marvin,
macros are part of the search strategy and thus are specific to the planner.

3.5 Wizard
Wizard is a genetic algorithm to learn macros [53, 54] that supports STRIPS. It gener-
ates macros off-line from solutions of less complex problem instances, so-called seeding
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problems. A macro’s precondition and effects are computed by regression. From an
initial macro, it uses a genetic algorithm to improve the macro by prepending and ap-
pending actions, removing actions from the beginning and end, and splitting the macro
into two separate macros. The resulting macros are then evaluated by solving ranking
problems with the domain augmented by the macro. The fitness function of the genetic
algorithm takes into account three measurements:

Cover the percentage of ranking problems solved when the macro is used;

Score the weighted mean time gain/loss over all ranking problems;

Point the percentage of ranking problems solved faster with the augmented domain than
with the original domain.

Wizard computes macros based on small seeding problems and improving them with
a genetic algorithm. In contrast, our approach generates macros from previous solutions
of problems with the same complexity. Thus, our approach will be able to generate
macros that are only helpful in more complex problem instances. Furthermore, instead
of selecting macros iteratively with a genetic algorithm, our macros are selected based
on an evaluation function in a non-iterative process. Finally, in contrast to Wizard,
DBMP supports full ADL domains.

3.6 The Duet Planner
The Duet Planner [30] combines domain-independent heuristics with domain-specific
knowledge. It does so by combining the PDDL planner LPG [29] with the HTN planner
SHOP2 [52]. LPG is a planner using domain-independent heuristics, while SHOP2
allows to exploit domain-specific knowledge by using HTNs. Duet splits the problem
into sub-gals and passes each sub-goal to both planners subsequently until all sub-goals
are reached.

Compared to our approach, the fundamental idea is different: While macro planning
allows to infer domain-specific knowledge from previous planning results, Duet is de-
signed such that an expert can add domain-specific knowledge to the domain. Thus,
macros can be computed automatically, while the HTNs of Duet need to be specified
by the domain designer. Additionally, Duet is based on LPG and cannot be used with
other PDDL planners, while our approach allows to substitute the underlying planner.

3.7 MUM
MUM [15, 13] is a PDDL planner that learns macros from the solutions of previous
problems. MUM only supports the STRIPS fragment of PDDL. Similar to Duet, it
first solves less complex training problems to generate macro candidates. It uses the
concept of outer entanglements [14] to rank and prune macros. Outer entanglements are
dependencies between operators and initial or goal predicates. As an example from the
Blocksworld domain, a block is only unstacked if it is stacked on another block initially
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(assuming there are no space restrictions). This is called an outer entanglement by init.
Similarly, a block is only stacked onto another block if this is the case in the goal, which is
called an outer entanglement by goal. If such an outer entanglement exists, any instances
on the operator that do not fulfill the condition can be immediately pruned. Thus, outer
entanglements allow to reduce the search space. In MUM, outer entanglements are used
to rank macros: Macros with outer entanglements by init and goal are in top rank,
macros with one entanglement are in middle rank, macros without entanglements are
in low rank. Additionally, outer entanglements are used during planning; any macro
instances not fulfilling the entanglement condition are pruned.

In addition to entanglements, MUM introduces independent actions, which are actions
that can be swapped in a plan without making the plan invalid. Independent actions
are considered during macro generation; a macro may also use non-consecutive actions
if the actions in-between are independent.

In contrast to MUM, we do not make use of independent actions or outer entangle-
ments. In MUM, the planner is modified to consider outer entanglements of macros; our
approach is independent of the underlying planner. MUM only uses simpler training
plans and uses at most six training plans; in our approach, we consider training plans of
the same complexity and we use a high number of training plans. MUM only supports
macros of length 2 while we also consider longer macros. Finally, MUM only supports
STRIPS while DBMP also supports the ADL fragment of PDDL.



4 Approach
The goal of this thesis is to improve planning performance by automatically generating
macros which can be used during planning and which speed up planning. The general
concept of DBMP is to use previous planning results to identify macro actions and to
augment the original domain with those macro actions.

DBMP

Plan DBPlanner

Domain

Problem

Seed
Plans

Macro Identifier

Action Sequences

Macro Generator

Augmented Domain

Macro Candidates
(Action Sequences)

Macro Actions
(PDDL Operators)

Figure 4.1: DBMP Architecture overview, adapted from [36].

Figure 4.1 shows the required steps to generate a domain augmented with a macro
action from a set of problems:

1. Collecting Seed Plans: The seed plans are plans which are analyzed in order to
identify frequent action sequences. The seed plans are normal plans of the same
domain (in particular, we do not use simplified seed problems). They can be
collected on-line during the execution of the robot, or they can be computed from
a number of generated problems. All plans are collected in the plan database.

2. Identification: From the seed plans, frequent action sequences including their pa-
rameter assignment are computed. Identification uses the MapReduce program-
ming paradigm and does not require any insights into the particular domain or
planning in general.

3. Generation: From the previously identified action sequences, we generate new
PDDL actions that can be added to the original domain. As a PDDL action is
described by a single precondition and effect, we need to combine all preconditions
of the actions in the sequence by regressing the precondition of each action to the
beginning of the sequence. Additionally, we need to chain the effects and compute
effect collisions of all effects in the action sequence. The generated macro actions
are then added to the original domain to obtain the augmented domain.
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4. Macro Planning and Macro Expansion: The augmented domain can be used for
planning new problems. Since macros are represented as normal actions, the plan-
ner does not need to be modified, but can be used as-is to solve a planning task.
However, in order to execute the resulting plan, the plan needs to be translated
back to the original domain, i.e., all macro actions in the plan have to be replaced
by the respective action sequence.

The first three steps can be executed off-line, i.e., we obtain an augmented domain
that can be used by the planner without any identification or generation steps during
the execution. The expansion step is done on-line because it is problem-specific and
needs to be executed for each problem after a plan was computed.

4.1 DBMP Database
The database is a central component of DBMP. Every step of the process shown in
Figure 4.1 gets the input from the database and saves the results in the database. We
store planning results for the original domain in the database, save identified action
sequences in the database, and store generated macros and augmented domains in the
database. We decided to use MongoDB for the plan database for the following reasons:

• MongoDB natively supports MapReduce, which we use for macro identification.

• It is document-oriented and schema-less, which allows us to store PDDL domains,
problems, actions, and formulas in a structured way.

• It supports complex queries on arbitrary document fields.

• It is highly scalable.

• It has been integrated with Fawkes and is used for robot memory (cf. Section 2.8),
thus integrating our approach into the existing framework will be easier.

Database Structure A MongoDB database consists of multiple collections, where each
collection stores documents of similar structure. In our database, we have the following
collections:

domains: All original and augmented domains are stored in this collection. The domain
itself is stored in raw text format accompanied with some meta information such
as included macros and evaluation scores.

problems: All problems of all domains are stored in this collection. The domain is
referenced by name so a problem may belong to multiple augmented domains that
extend the same domain. The problem is stored in raw text format.

solutions: All plans generated by the planners are stored in this collection. Solutions are
stored both in raw text format and structured format. To obtain the structured
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format, a planner-specific solution parser translates the raw solution into a list of
actions. Additionally, each solution has a boolean field use for macros, which
specifies whether the solution can be used as a seed plan for macro identification.

action sequences: For each domain name in the domains collection, there is a separate
collection with the name action sequences <domain name>. In this collection,
the result of the MapReduce operation to identify action sequences is stored.

macros: This collection stores the results of the macro generation step together with
the evaluation scores of each macro.

Listing 4.1: A database entry for an augmented domain.
1 {
2 "_id" : ObjectId("58ade052ee1e5bbfce91825f"),
3 "macros" : [
4 ObjectId("58ade052ee1e5bbfce918245")
5 ],
6 "augmented" : true,
7 "evaluation" : {
8 "complementarity_weighted_fp_evaluator_50_50" : 45650,
9 "complementarity_weighted_fp_evaluator_0_100" : 200,

10 "complementarity_weighted_fp_evaluator_100_0" : 91100,
11 },
12 "name" : "cleanup",
13 "base_domain" : ObjectId("58989933caa4414d3ee08a49"),
14 "raw" : "(define (domain cleanup_with_kif) ...)"
15 }

Listing 4.1 shows an example for a database entry for an augmented domain. This
domain is augmented with one macro. A reference to the macro is kept in the document
in line 4. Additionally, the document contains a dictionary of evaluation scores. This
domain was evaluated by the complementarity weighted fp evaluator 50 50 (CFP)
evaluator with a score of 45650. See Section 4.4 for more information on evaluators.

Listing 4.2 shows a solution document for a problem that was successfully solved by
the planner FF. Storing solutions in such a structured way allows to analyze the planning
results with a database query. As an example,the following query finds all plans that
contain the goto operator:

db.solutions.find({"actions.operator": "goto"})

We will use the structured planning results in Section 4.2 to find common action
sequences in the database.
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Listing 4.2: A solution document for a problem from the Cleanup domain.
1 {
2 "_id" : ObjectId("5898af40779a150001c38276"),
3 "resources" : [ 0.015849, 0.004772, 11544, ...],
4 "planner" : "ff",
5 "problem" : ObjectId("58989935caa4414d3ee08afe"),
6 "start_time" : ISODate("2017-02-06T17:15:44.061Z"),
7 "use_for_macros" : true,
8 "domain" : ObjectId("58989933caa4414d3ee08a49"),
9 "end_time" : ISODate("2017-02-06T17:15:44.095Z"),

10 "raw" : "(GOTO LIVINGROOM_TABLE)\n(ALIGN_TO LIVINGROOM_TABLE) ...",
11 "actions" : [
12 {
13 "operator" : "goto",
14 "parameters" : [
15 "livingroom_table"
16 ]
17 },
18 {
19 "operator" : "align_to",
20 "parameters" : [
21 "livingroom_table"
22 ]
23 },
24 ...
25 ]
26 }

4.2 Macro Identification
The goal of macro identification is to identify common action sequences in the plan
database, which are then used to generate macros. In the plan database, we store plans
which are simply sequences of grounded actions. From these sequences, we need to iden-
tify frequent sub-sequences and compute the respective (ungrounded) action sequences.
As an example, consider a domain with the following actions:

• goto(?to - location): Go to location ?to.

• align-to(?align-loc - location): Align to location ?align-loc.

• pick-up(?c - cup): Pick up cup ?c.

• put(?c - cup ?put-loc - location): Put cup ?c at location ?put-loc.
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The database may contain the following three plans:

Plan 1 <goto(table),align-to(table),pick-up(cup)>

Plan 2 <goto(counter),align-to(counter),put(cup,counter)>

Plan 3 <goto(kitchen),align-to(dishwasher),put(cup,dishwasher)>

From those plans, we can identify the sequences with respective parameter assignment
and occurrence count shown in Table 4.1.

Action Sequence Parameter CountAssignment Enumeration

<goto, align-to>
?to → ?l1
?align-loc → ?l1

[1], [1] 2

<goto, align-to>
?to → ?l1
?align-loc → ?l2

[1], [2] 3

<align-to,put>
?align-loc → ?l1
?c → ?c1
?put-loc → ?l1

[1], [2, 1] 2

<align-to,put>
?align-loc → ?l1
?c → ?c1
?put-loc → ?l2

[1], [2, 3] 2

<goto, align-to, put>

?to-loc → ?l1
?align-loc → ?l1
?c → ?c1
?put-loc → ?l1

[1], [1], [2, 1] 1

<goto, align-to, put>

?to-loc → ?l1
?align-loc → ?l2
?c → ?c1
?put-loc → ?l2

[1], [2], [3, 2] 2

Table 4.1: An example for identifying action sequences in a plan database. The param-
eter assignment defines for each parameter in the action sequence to what
parameter it should be assigned to. The parameter enumeration enumerates
the assignment, i.e., if a parameter is assigned to the same value, it will have
the same enumeration. Depending on the assignment, the occurrence count
may differ. As an example, consider the first two sequences: If ?to and
?align-loc are assigned to the same parameter, then the sequence <goto,
align-to> occurs twice. If they are assigned to different parameters, the se-
quence occurs three times, because in Plan 3, the parameters differ. Note that
the plan database contains more sequences, this table is a sample selection.
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The example in Table 4.1 already shows that a plan database may potentially con-
tain a very large number of action sequences, especially if we take different parameter
assignments into account. In order to deal with this, we use the MapReduce paradigm,
as introduced in Section 2.8.3. For MapReduce, we need to define two operators, the
Map operator and the Reduce operator:

Map As its input, the map operator gets a single plan consisting of a list of grounded
actions. From that plan, it computes all occurring action sub-sequences including
all possible parameter assignments. For each action sub-sequence, Map emits a
document that contains all parameter assignments for that sub-sequence including
the respective occurrence counts. The pseudo-code for Map is shown in Listing 4.3.

Reduce The input for the Reduce operator is a list of documents from the previous
step, where the list contains all documents with a specific action sequence. The
Reduce operator sums up all occurrence counts to obtain an occurrence count for
each action sequence and parameter assignment for the whole plan database. The
pseudo-code for Reduce is shown in Listing 4.4.

Listing 4.3: The Map operator to find all sub-sequences in a plan.
1 input:
2 plan: a list of grounded actions with length l
3 maxLength: a maximum sequence length
4 output: a list of action sequences with parameter enumerations
5 begin
6 enumerations := {}
7 for seqStart := 0 to l
8 for i := 1 to maxLength
9 currentEnumerations := {}

10 actions := plan[seqStart:seqStart+i]
11 params := getParameters(actions)
12 foreach enumeration in getPossibleEnumerations(length(params))
13 if isValidEnumeration(actions, enumeration) do
14 currentEnumerations.add(enumeration)
15 end
16 end
17 enumerations.add((actions, currentEnumerations))
18 end
19 end
20 return enumerations
21 end
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Listing 4.4: The Reduce operator to sum up parameter enumerations.
1 input:
2 enumerations: a list of parameter enumerations
3 output:
4 a dictionary of pairs <enumeration, occurrence count>
5 begin
6 result := {}
7 foreach enumeration in enumerations:
8 result[enumeration] := result[enumeration] + 1
9 end

10 end

4.3 Macro Generation
The purpose of macro generation is to compute a PDDL action representation for a pre-
viously identified macro, i.e., take a sequence of PDDL actions and compute the macro
action’s precondition and effects such that the macro can be used as a normal PDDL
action in the augmented domain. For each such action sequence s, macro generation
consists of the following steps:

1. Parse the PDDL domain.

2. Compute the precondition of the action sequence s using regression.

3. Compute the effects of the action sequence s using effect chaining.

4. Compute the macro’s parameters.

5. Generate a PDDL action description for the generated macro action.

We describe each step in detail in the following sections.

4.3.1 PDDL Parser
In order to parse a PDDL domain, we formulated (strict) PDDL as a definite clause
grammar (cf., Section 2.1.3). Definite clause grammars can be directly implemented in
Prolog. The parser gets a PDDL string as input and returns the PDDL domain in
a structured form. As an example, the rule shown in Listing 4.5 parses a string that
describes a PDDL action into the action’s name, parameters, precondition, and effects.

As another example, the rules shown in Listing 4.6 describe an action effect. For each
kind of effect (i.e., atomic effect, negated atomic effect, conjunction, conditional effect,
and quantified effect), there is a separate rule. Body parts of the form {...} as in line 5
describe additional constraints formulated as Prolog predicate that must be satisfied so
the rule can be applied.
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Listing 4.5: A DCG rule for parsing a PDDL action.
1 action(Name, Parameters, Precondition, Effects) −→
2 ["(",":action"], [Name],
3 [":parameters"], ["("], typed_list(Parameters), [")"],
4 [":precondition"], ["("], goal_description(Precondition), [")"],
5 [":effect"], effect(Effect),
6 [")"].

Listing 4.6: A DCG rule for parsing a PDDL action effect.
1 effect(Effect) −→ atomic_formula(Effect).
2 effect(Effect) −→ ["(", "not"], atomic_formula(Effect), [")"].
3 effect(Effect) −→
4 ["(", "and"], effect_list(Effects), [")"],
5 { Effect =.. [and|Effects] }.
6 effect(when(Cond,Effect)) −→
7 ["(", "when"], goal_description(Cond), effect(Effect), [")"].
8 effect(all(VarList,Effect)) −→
9 ["(", "forall"],

10 ["("], typed_list(VarList), [")"],
11 effect(Effect), [")"].

The result of the PDDL parser is used for computing the macro’s parameters, pre-
condition, and effects. Additionally, the definite clause grammar is also used to generate
a PDDL representation of the resulting macro action.

4.3.2 Precondition
To compute the precondition of a macro, we need to combine all the preconditions
of the actions in the given sequence. As one action in the sequence may affect the
precondition of a subsequent action, we need to regress the precondition of each action
over the effects of all preceding actions. As an example, consider the action sequence
<goto(?l),align-to(?l)>. The precondition of align-to(?l) is at(?l). However,
the action goto(?l) has as its effect at(?l), and thus the precondition of align-to(?l)
can be regressed to true.

More generally, we require the following: If the precondition of the macro is satisfied,
then the precondition of each action in the corresponding action sequence must be sat-
isfied after applying the effects of all preceding actions. We first define the notion of
an executable action sequence, which is an action sequence whose actions can be applied
consecutively.
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Definition 4.3.1 (Executable action sequence).
Given a sequence of grounded actions σ = 〈a1, . . . , an〉 with preconditions π1, . . . , πn.
We say σ is executable in world state w if the following holds:

w |= π1 ∧ [a1] (π2 ∧ [a2] (π3 ∧ . . . ∧ [an−1] (πn) . . .))

We can then formalize the requirement above by defining macro representations of
preconditions:

Definition 4.3.2 (Macro representation of preconditions).
Let m be an ADL operator, πm the precondition of m, and σ = 〈a1, . . . , an〉 a sequence
of ADL operators with free variables x1 . . . , xk. We say πm is a macro representation
of the preconditions of σ if πm contains no free variables but x1, . . . , xk and for all world
states w and ground terms r1, . . . , rk, the following holds:

If w |= πm(r1 . . . , rn), then σ(r1, . . . , rn) is executable in w.

Note that this does not require that the converse also holds, i.e., even if the corre-
sponding action sequence may be executable, the macro’s precondition does not need to
be satisfied. There are two reasons for this: First, we always only add macros to the
domain, but we never remove actions. Thus, even if the macro’s precondition is never
satisfied, completeness is not impaired. If a plan exists for a given problem in the original
domain, then this plan is also valid in the augmented domain. Second, not requiring the
converse allows us to simplify the precondition of the generated macro. In particular,
we can reduce the number of disjunctions and implications in the precondition, as these
typically impair planner performance. As an example, let action a1 be an action with
precondition π1 = > and effect e1 = p(o1) and let o1 have type object. Let the precon-
dition π2 of the subsequent action a2 be π2 = ∀o:obj [p(o)]. In this case, the sequence
〈a1, a2〉 is executable in world state w if the following holds:

w |= ∀o:object [o = o1 ∨ p(o)]

Thus, the precondition of the macro 〈a1, a2〉 should be ∀o:object [o = o1∨p(o)]. However,
we could also simplify the precondition to ∀o:object [p(o)] in order to avoid an additional
disjunction in the precondition.

To compute the precondition of an ADL operator sequence, we define the operator
R1, where R1(α, e) is the regression of precondition formula α over effect formula e.
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Definition 4.3.3 (Regression R1 over a single effect).
Let α, α1, α2 be precondition formulas, φ an atomic formula, e an effect formula, ~r, ~s, ~t
ground terms and F (~s), F (~t), G(~r) atomic formulas with distinct fluent predicate names
F and G. The operator R1(α, e) is defined inductively over the precondition formula α
and the effect formula e.

R1(F (~t), F (~t)) = > (4.1)
R1(F (~t), G(~r)) = F (~t) (4.2)
R1(F (~s), F (~t)) = ~s 6= ~t ∧ F (~s) ∨ ~s = ~t (4.3)

R1(¬α, e) = ¬R1(α, e) (4.4)
R1(α1 ∧ α2, e) = R1(α1, e) ∧R1(α2, e) (4.5)
R1(α1 ∨ α2, e) = R1(α1, e) ∨R1(α2, e) (4.6)
R1(∀~x:~τ α, e) = ∀~x:~τ R1(α|~x~v , e)|~v~x (4.7)

where ~v are new variables not occurring in e or α
R1(∃~x:~τ α, e) = ∃~x:~τ R1(α|~x~v , e)|~v~x (4.8)

where ~v are new variables not occurring in e or α
R1(F (~t),¬F (~t)) = ⊥ (4.9)
R1(F (~t),¬G(~r)) = F (~t) (4.10)
R1(F (~s),¬F (~t)) = ~s 6= ~t ∧ F (~s) (4.11)
R1(φ, e1 ∧ e2) = R1(R1(α, e1), e2) (4.12)

R1(φ,∀x:τ e) =
{∨

v∈Free(τ,φ)R1(φ, e|xv) if Free(τ, φ) 6= ∅
φ else

(4.13)

R1(φ, γ ⇒ e) = γ ∧R1(φ, e) ∨ ¬γ ∧ φ (4.14)

In the following, we present some examples on regressing a precondition formula on a
single effect:

1. R1(aligned(l), at(l)) (4.2)= aligned(l)

2. R1(at(l), at(l)) (4.1)= >

3. R1(at(l),¬at(l)) (4.9)= ⊥

4. R1(at(l1),∀x:location x 6= l2 ⇒ ¬at(x))
(4.13)= R1(at(l1), l1 6= l2 ⇒ ¬at(l1))
(4.14)= l1 6= l2 ∧R1(at(l1),¬at(l1)) ∨ l1 = l2 ∧ at(l1)
(4.3)= l1 6= l2 ∧ ⊥ ∨ l1 = l2 ∧ at(l1)
= l1 = l2 ∧ at(l1)
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5. R1(∀o:obj p(o), p(o1))
(4.7)= ∀o:obj R1(p(v), p(o1))|vo
(4.3)= ∀o:obj (v 6= o1 ∧ p(v) ∨ v = o1) |vo
= ∀o:obj. o 6= o1 ∧ p(o) ∨ o = o1

= ∀o:obj. p(o) ∨ o = o1

6. R1(∃l:location. at(l) ∧ ¬aligned(l),¬aligned(l1))
(4.8)= ∃l:location.R1(at(v) ∧ ¬aligned(v),¬aligned(l1))|vl
(4.5)= ∃l:location

[
R1(at(v),¬aligned(l1)) ∧R1(¬aligned(v), aligned(l1))

]
|vl

(4.2)= ∃l:location
[
at(v) ∧R1(¬aligned(v),¬aligned(l1))

]
|vl

(4.4)= ∃l:location
[
at(v) ∧ ¬R1(aligned(v),¬aligned(l1))

]
|vl

(4.11)= ∃l:location
[
at(v) ∧ ¬

(
v 6= l1 ∧ aligned(v))

)]
|vl

= ∃l:location
[
at(v) ∧ (v = l1 ∨ ¬aligned(v))

]
|vl

= ∃l:location. at(l) ∧ (l = l1 ∨ ¬aligned(l))

Generating the precondition of a macro. Using the regression operator R1, we com-
pute the precondition πm of a macro m representing an action sequence σ = 〈a1, . . . , an〉
with preconditions π1, . . . , πn and effects e1 . . . en as shown in Listing 4.7.

Listing 4.7: Generating a macro precondition.
1 input: int n, goal formulas π1, . . . , πn, effect formulas e1, . . . , en
2 output: goal formula πm
3 begin
4 πm := πn
5 for i := n-1 to 1
6 πm := R1(πm, ei) ∧ πi
7 end
8 return πm
9 end

Note that we apply the effects of σ in reverse order, i.e., we first apply en on α, then
en−1 on the resulting formula, and so on, until e1 was applied. This is because en is
the last effect of the sequence and thus may cancel previous effects. As an example,
consider the effect sequence σ = 〈p(a),¬p(a)〉. Clearly, when regressing p(a) over σ, the
result should be ⊥, because ¬p(a) directly conflicts with p(a). The previous effect p(a)
is canceled by the subsequent effect ¬p(a).
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Implementation We implemented the computation of preconditions and in particular
the R1 operator in Prolog by defining a Prolog predicate

regress(Effects, TypedVariables, Formula, ResFormula)

which is true iff ResFormula is the result of regressing Formula on Effects, given the
names and types TypedVariables.

Listing 4.8: The Prolog implementation of R1(F (~s),¬F (~t)).
1 regress_(
2 [not(Effect)|RemainingEffects], Types, Formula, ResFormula
3 ) :-
4 % Effect is of the form Predicate(EffectArgs).
5 Effect =.. [Predicate|EffectArgs],
6 % Formula is of the form Predicate(FormulaArgs).
7 Formula =.. [Predicate|FormulaArgs],
8 % Predicate is actually a predicate and not a compound formula.
9 \+ member(Predicate, [and,or,all,imply,when,not]),

10 % Generate equations of the form not(EffectArg = FormulaArg)
11 % for each pair of arguments in EffectArgs and FormulaArgs.
12 maplist(\EffectArgˆFormulaArgˆ(=(not(EffectArg = FormulaArg))),
13 EffectArgs, FormulaArgs, Equations),
14 % The resulting formula is a conjunction
15 % of all equations from above.
16 ResStepFormula =.. [and,Formula|Equations],
17 % Continue regressing on the remaining effects.
18 regress_(RemainingEffects, Types, ResStepFormula, ResFormula).

As an example, Listing 4.8 shows the implementation of R1(F (~s),¬F (~t)). Note that
the implementation slightly differs from the definition of R1. For one, the order of
arguments is different, i.e., the first argument is a list of effects, the second argument
is a list of typed variables, the third argument is the formula, and the fourth argument
is the regressed formula. Second, the formula is not only regressed on a single effect,
but on a list of effects, and regress is called recursively. Third, the predicate shown
here is called regress . We also define a predicate regress, which calls regress and
simplifies the result, as shown in Listing 4.9.

Listing 4.9: The predicate regress, which calls regress and simplifies the result.
1 regress(Effects, Types, Formula, SimplifiedRegressedFormula) :-
2 once(regress_(Effects, Types, Formula, RegressedFormula)),
3 simplify(RegressedFormula, SimplifiedRegressedFormula).
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Listing 4.10: A simplified goto action.
1 (:action goto
2 :parameters (?from ?to - location)
3 :precondition
4 (and
5 (robot-at ?from)
6 (not (robot-at ?to)))
7 :effect
8 (and
9 (not (robot-at ?from))

10 (robot-at ?to)
11 )
12 )

4.3.3 Effects
To compute the effect of a macro action, we need to combine all effects in the respective
action sequence. In particular, we need to compute conflicting effects and resolve these
conflicts. As an example, consider the simplified goto action shown in Listing 4.10.
When we chain two goto actions in the sequence <goto(?l1,?l2)>,goto(?l2,?l3)>,
then the sub effect (robot-at ?l2) of the first action conflicts with the effect (not
(robot-at ?l2)) of the second action. Since the second action’s effect is applied after
the first action’s effect, the resulting effect should be:

(and (not (robot-at ?l1)) (not (robot-at ?l2)) (robot-at(?l3)))

Note that in contrast to the precondition, the resulting macro effect must exactly
match the effects of all actions in the sequence. Thus, we cannot omit sub effects or add
more effects to the macro. Formally, we define a macro representation of an effect:

Definition 4.3.4 (Macro representation of effects).
Let m be an ADL operator, em the effect of m, and σ = 〈a1, . . . , an〉 a sequence of ADL
operators with free variables ~v of types ~τ . We say em is a macro representation of the
effects of σ if the following holds for all atomic formulas φ:

|= ∀~v:~τ . [m]φ ≡ [an][an−1] . . . [a1]φ

Note that we do not distinguish between a macro and an ADL operator. In fact,
any ADL operator can be a macro representation of some operator sequence. Before we
define effect chaining, we first define a restriction on effect formulas.

Definition 4.3.5 (Properly quantified effects).
We call an effect formula e properly quantified if the following holds for each conditional
effect sub-formula γ ⇒ e′ of e: If v is a free variable in γ, but not a free variable in e,
then it must occur in each atomic sub-formula of e′.
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In other words, we do not allow ∀-quantification only over variables in the condition
of a conditional effect. As an example, consider the effect e = ∀o:τ. p(o)⇒ q(a). If p(o)
holds for any o, then the effect of the action will always be q(a). This is different from the
effect e′ = (∀o:τ p(o))⇒ q(a). In this case, the effect q(a) only follows if p(o) is true for
all objects of type τ . In the first case, the quantifier ∀o:τ quantifies over the conditional
effect p(o) ⇒ q(a). In the second case, the quantifier is part of the condition, and only
quantifies over the formula p(o). Note that, assuming there is an object of type τ , we can
formulate an equivalent effect e′ that is properly quantified: eproper = (∃o:τ p(o))⇒ q(a).

To compute the resulting effect of two consecutive actions, we define the chain operator
C(e1, e2) that chains two effects e1, e2, where e1 is before e2.

Definition 4.3.6 (Effect chaining C).
Let e1, e2, e3 be properly quantified effect formulas, ε an atomic effect, ~r, ~s, ~t ground
terms and F (~s), F (~t), G(~r) atomic formulas with distinct fluent predicate names F and
G. The operator C(e1, e2) is defined inductively over the effects e1 and e2:

C(F (~s), F (~t)) = F (~s) (4.15)
C(¬F (~s), F (~t)) = ~s 6= ~t⇒ ¬F (~s) (4.16)
C(F (~s), G(~t)) = F (~s) (4.17)
C(¬F (~s), G(~r)) = ¬F (~s) (4.18)
C(F (~s),¬F (~t)) = ~s 6= ~t⇒ F (~s) (4.19)
C(¬F (~s),¬F (~t)) = ¬F (~s) (4.20)
C(F (~s),¬G(~r)) = F (~s) (4.21)
C(¬F (~s),¬G(~r)) = ¬F (~s) (4.22)

C(e1 ∧ e2, e) = C(e1, e) ∧ C(e2, e) (4.23)
C(γ ⇒ e1, e2) = γ ⇒ C(e1, e2) (4.24)
C(∀x:τ e1, e2) = ∀x:τ C(e1|xv , e2)|vx (4.25)

where v is a new variable not occurring in e1 or e2

C(ε, e1 ∧ e2) = C(C(ε, e1), e2) (4.26)

C(ε, ∀x:τ e1) =


∧

v∈Free(τ,ε)
C(ε, e1|xv) if Free(τ, ε) 6= ∅

ε else
(4.27)

C(ε, γ ⇒ e1) = R1(γ, ε)⇒ C(ε, e1) ∧ ¬R1(γ, ε)⇒ ε (4.28)

In the following, we present some examples for effect chaining:

1. C(p(l), p(l))(4.15)= p(l)

2. C(¬p(l), p(l))(4.16)= (l 6= l⇒ ¬p(l)) = ⊥

3. C(¬p(l), p(r))(4.16)= (l 6= r ⇒ ¬p(l))
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4. C(p(a) ∧ ¬p(b), p(b))(4.23)= C(p(a), p(b)) ∧ C(¬p(b), p(b))
(4.15)= p(a) ∧ C(¬p(b), p(b))
(4.16)= p(a) ∧ ⊥
= p(a)

5. C(p(b) ∧ ¬p(a), p(b))(4.23)= C(p(b), p(b)) ∧ C(¬p(a), p(b))
(4.15)= p(b) ∧ C(¬p(a), p(b))
(4.16)= p(b) ∧ a 6= b⇒ ¬p(a)

6. C(p(a)⇒ q(a), p(a))(4.24)= p(a)⇒ C(q(a), p(a))
(4.17)= p(a)⇒ q(a)

7. C(∀o:obj p(o),¬p(a))(4.25)= ∀o:obj C(p(v),¬p(a))|vo
(4.16)= ∀o:obj (v 6= a⇒ p(v))|vo

= ∀o:obj. o 6= a⇒ p(o)

8. C(∀o:obj ¬p(o) ∧ q(a, o), q(a, a)⇒ p(a))
(4.25)= ∀o:obj C(¬p(v) ∧ q(a, v), q(a, a)⇒ p(a))|vo
(4.23)= ∀o:obj

[
C(¬p(v), q(a, a)⇒ p(a)) ∧ C(q(a, v), q(a, a)⇒ p(a))

]∣∣v
o

(4.28)= ∀o:obj
[
R1(q(a, a),¬p(v))⇒ C(¬p(v), p(a))

∧ ¬R1(q(a, a),¬p(v))⇒ ¬p(v)
∧R1(q(a, a), q(a, v))⇒ C(q(a, v), p(a))

∧ ¬R1(q(a, a), q(a, v))⇒ q(a, v)
]∣∣∣v
o

(4.2,4.3)= ∀o:obj
[
q(a, a)⇒ (v 6= a⇒ ¬p(v))

∧ ¬q(a, a)⇒ ¬p(v)
∧ (a 6= v ∧ q(a, v) ∨ a = v)⇒ q(a, v)

∧ ¬(a 6= v ∧ q(a, v) ∨ a = v)⇒ q(a, v)
]∣∣∣v
o

= ∀o:obj
[

(v 6= a ∨ ¬q(a, a)⇒ ¬p(v)) ∧ q(a, v)
]∣∣∣v
o

= ∀o:obj
[

(o 6= a ∨ ¬q(a, a)⇒ ¬p(o)) ∧ q(a, o)
]
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9. C(∀x:obj. q(x)⇒ p(x), ∀x:obj. ¬p(x))
(4.25)= ∀x:obj. C(q(v)⇒ p(v), ∀x:obj. ¬p(x))

∣∣v
x

(4.24)= ∀x:obj. [q(v)⇒ C(p(v), ∀x:obj. ¬p(x))]
∣∣v
x

(4.27)= ∀x:obj. [q(v)⇒ C(p(v),¬p(v))]
∣∣v
x

(4.19)= ∀x:obj. (q(v)⇒ ⊥)
∣∣v
x

= ⊥

Using the chain operator C, we can now define an algorithm that computes the effect
of a sequence of actions. As shown in Listing 4.11, the algorithm loops over all effects
starting with the last effect and adds each effect by chaining it to the currently computed
effect. The resulting effect is the effect of the whole action sequence.

Listing 4.11: Generating a macro effect.
1 input: int n, effect formulas e1, . . . , en
2 output: effect formula em
3 begin
4 em := en
5 for i := n-1 to 1
6 em := C(ei, em) ∧ em
7 end
8 return em
9 end

Limitations

1. We have already restricted effect formulas to properly quantified formulas. With
the definition of the chain operator C above, we can show an example why we
need this restriction. Consider two actions a1, a2 with the effects e1 = p(a) and
e2 = ∀o:obj. c(o)⇒ ¬p(a).

C(e1, e2) = C(p(a),∀o:obj. c(o)⇒ ¬p(a))
= C(p(a), c(a)⇒ ¬p(a))
= R1(c(a), p(a))⇒ C(p(a),¬p(a)) ∧ ¬R1(c(a), p(a))⇒ p(a)
= ¬c(a)⇒ p(a)

Thus, the effect em of macro am resulting from the effect generation would be

em = ¬c(a)⇒ p(a) ∧ ∀o:obj. c(o)⇒ ¬p(a)



4 Approach 57

However, em is not a macro representation of the effects of 〈a1, a2〉. Consider a
world w with w |= c(b)∧¬c(a). Since w |= c(b), it follows that w |= [a2]¬p(a), and
therefore also w |= [a2][a1]¬p(a), because the effect of a2 is applied last. However,
w |= ¬c(a), and thus w |= [am]p(a). This example shows that the chaining C(e1, e2)
is incorrect if e2 is not properly quantified. The correct macro representation of
the effects of 〈a1, a2〉 would be:

em = ∀o:obj [¬c(o)]⇒ p(a) ∧ ∀o:obj. c(o)⇒ ¬p(a)

Note that the quantifier in the first conjunct only quantifies over the condition
c(o), while the quantifier in the second conjunct quantifies over the whole effect
formula c(o) ⇒ ¬p(a). Thus, the first conjunct is a conditional effect with a ∀-
quantifier in the condition, while the second conjunct is a ∀-quantified effect with
a nested conditional effect. Despite the syntactic similarity, the effects are very
different. While we can give a macro representation for the example above, it is
not immediately clear how to chain non-properly quantified effects in the general
case. For that reason, we require all effects to be properly quantified.

2. Additionally, the chaining of effects is incorrect if both effects are ∀-quantified,
and one quantifier ranges over a subtype of the other quantifier. As an example,
consider the case where we have a type obj with a sub-type thing. Consider the
two actions a1 and a2 with effects e1 = ∀o:obj. p(o) and e2 = ∀o:thing. ¬p(o). The
chaining C(e1, e2) of the two effects is the following:

C(e1, e2) = C(∀o:obj. p(o), ∀o:thing. ¬p(o))
= ∀o:obj.C(p(v), ∀o:thing. ¬p(o))

∣∣v
o

= ∀o:obj p(o)

In the last step, Free(thing, p(v)) = ∅ because v is of type obj. However, we need
to take into account that thing is a sub-type of obj, and therefore we need to make
a case distinction for v whether it is a thing or not. The correct result for the
chaining would be the effect formula

∀o:obj. ¬thing(o)⇒ p(o)

While we can express this in ES and it is also consistent with the ADL semantics
introduced in Section 2.4, this cannot be expressed in PDDL because we cannot
state ¬thing(o) in PDDL. We omit this case in the definition of the chaining C.

Closure under chaining C Even if we take the above limitations into account, we can
see that some PDDL dialects are not closed under chaining. In particular, STRIPS
effects are not closed under chaining. Consider Example 3 above: The result of the
chaining of the two STRIPS effects ¬p(l) and p(r) is C(¬p(l), p(r)) = l 6= r ⇒ ¬p(l),
which is a conditional effect and therefore not a STRIPS effect. However, with the
limitations above, ADL effects are closed under chaining.
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Implementation Similar to the implementation of the precondition computation, we
implemented effect chaining in Prolog. The central component in the Prolog implemen-
tation is the predicate resolve conflicting effects, which implements the chaining
operator C(e1, e2).

Listing 4.12: The implementation of the chaining C(ε,∀x:τ e2).
1 resolve_conflicting_effect(
2 (all([(Type,[Var|TypedVars])|Vars],QuantifiedEffect),PrevParams),
3 (Effect,Params),
4 QuantifiedVars,
5 (ResEffect,ResParams)
6 ) :-
7 findall(ResSubParameterizedEffect,
8 ( is_in_typed_list(EffectVar, Params),
9 has_type(EffectVar, Params, EffectVarType),

10 ( EffectVarType = Type
11 ; domain:subtype_of_type(EffectVarType, Type)
12 ),
13 substitute(Var, [QuantifiedEffect], EffectVar,
14 [SubstitutedEffect]),
15 resolve_conflicting_effect(
16 (all([(Type,TypedVars)|Vars], SubstitutedEffect),
17 [(Type,[EffectVar])|PrevParams]),
18 (Effect,Params),
19 [(Type,[EffectVar])|QuantifiedVars],
20 ResSubParameterizedEffect
21 )),
22 ResSubParameterizedEffects
23 ),
24 ( ResSubParameterizedEffects = []
25 -> ResEffect = Effect, ResParams = Params
26 ; maplist(
27 \ParameterizedEffectˆSubEffectˆSubParamsˆ(
28 =(ParameterizedEffect,(SubEffect,SubParams))),
29 ResSubParameterizedEffects,
30 ResSubEffects,
31 SubParamsList
32 ),
33 ResEffect =.. [and|ResSubEffects],
34 merge_typed_lists(SubParamsList, ResParams)
35 ).

Listing 4.12 shows the implementation of the chaining C(ε, ∀x:τ e2). Again, the order
of parameters is different to the order in the definition of C. Also note that each effect is
actually a pair of an effect formula a typed list of the formula’s variables. The additional
parameter QuantifiedVars is kept so we can distinguish between the effects parameters
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and quantified variables in recursive calls. Starting in line 7, we find each free variable
v in ε and compute the chaining for each substitution x → v in line 15. All chained
substituted effects are collected in the variable ResSubParameterizedEffect. If no such
substitution exists, we are in the case Free(τ, ε) = ∅ and the resulting effect is ε (cf.,
Equation 4.27). Otherwise, we reconstruct the parameter list in line 26-32 and then
compute the resulting effect as conjunction of all chained substituted effects in line 33.

4.3.4 Parameters
In order to compute the parameters of a macro, we need to merge the parameters of
all actions in the respective action sequence while taking the parameter reassignment
into account. As an example, consider the action sequence <align-to, put> with the
parameter enumeration [1],[2,1], as shown in Table 4.1. The resulting parameters of
the macro should be {l1:location, c1:cup}.

Listing 4.13: The algorithm to compute the parameters of a macro. The input is a
sequence of parameters that contains all parameters of all operators in the
macro’s operator sequence. The resulting parameters are the parameters
of the macro operator.

1 input: a sequence of parameters P = 〈p1:τ1, . . . , pk:τk〉
2 output: a set of parameters Pm = {pm,1:τm,1, . . . , pm,l:τm,l}
3 begin
4 Pm := ∅
5 for p:τ ∈ P:
6 if p:τ ′ /∈ Pm for any type τ ′:
7 Pm := Pm ∪ {p:τ}
8 else if p:τ ′ ∈ Pm and τ ( τ ′:
9 Pm := (Pm \ {p:τ ′}) ∪ {p:τ}

10 end
11 end
12 return Pm
13 end

Additionally, it may be the case that two actions have the same reassigned parameter,
but one is a sub-type of the other. In that case, we need to restrict the parameter to
the sub-type. As an example, consider the action sequence <goto, align-to> with the
parameter assignment [1],[1]. Assume for now that the parameter ?to of the action
goto is of type location, while the parameter of the action align-to is of type table,
a sub-type of location. Thus, the resulting parameter of the macro operator needs
to be restricted to the type table. Listing 4.13 shows pseudo-code for the parameter
computation. The algorithm takes as input the sequence of all parameters of the macro’s
operators and returns a set of parameters for the macro operator. Note that the input is
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a sequence and thus may contain the same parameter twice while the output can contain
each parameter only once.

4.3.5 PDDL Representation
In the final step, we take the generated ADL operator (~y:~τ , πm, em) and translate it back
into a PDDL string representation. In order to do this, we re-use the definite clause
grammar presented in Section 4.3.1. The implementation of definite clause grammars in
Prolog is bi-directional: It can be used both for parsing and generating a language. In
addition to reducing the implementation effort, this has the advantage that it ensures
compatibility of the input (the original domain) and the output (the generated macro).

4.4 Macro Pruning
Identifying frequent action sequences and generating macro actions from those sequences
potentially results in a large number of macros. From those macros, we need to select
macros that are most promising. In order to do so, we use macro evaluators, which
assign a score to each macro and to each set of macros. The goal is to find evaluators
that assign high scores to useful macros and low scores to not so useful macros. To
evaluate a single macro, we use two properties of the macro:

Frequency f(m): The number of occurrences of the corresponding action sequence σm
of m in the seed plans.

Parameter Reduction p(m) The difference between the sum over the number of pa-
rameters of the operator sequence and the number of parameters of the macro
operator. If m is a macro operator with km parameters, 〈a1, . . . , an〉 is the corre-
sponding operator sequence, and ki is the number of parameters of operator ai,
then the parameter reduction p(m) of macro m is defined as:

p(m) =
n∑
i=1

(ki)− km

Now we can define an evaluator that evaluates a macro by a weighted sum of frequency
and parameter reduction with some weight w ∈ [0, 1]:

FPw(m) = wf(m) + (1− w)p(m)

When evaluating a set of macros, we additionally need to compare the macros’ sim-
ilarity. We want to avoid sets of macros that are very similar, since a duplicate macro
increases the size of the search space without adding any benefit. Therefore, we use the
complementarity of the macros as measurement for macro sets.
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Definition 4.4.1 (Complementarity of a set of macros).
Let M = {m1, . . . ,mn} be a set of macros and for each macro, let σi = 〈ai1 , . . . aili 〉 the
corresponding action sequence. The complementarity C(M) of the macro set M is

C(M) =

∣∣∣⋃ni=1

{
ai1 , . . . , aili

}∣∣∣∑n
i=1

∣∣∣{ai1 , . . . , aili}∣∣∣
Using the complementarity, we can now define the evaluation function CFP:

Definition 4.4.2 (Evaluation function CFP(M)).
The evaluation CFPw(M) of a set of macros M with some weight w ∈ [0, 1] is:

CFPw(M) = C(M) ·
∑
m∈M FPw(m)√

|M |

Note that we divide by the square root of the number of macros in the set M : If we do
not take the number macros into account, then adding another macro to M will always
increase the evaluation score as long as the macro does not share any actions with a
macro in the set. This is the case even if the additional macro only occurs once in the
database: For any macro m that was generated from the plan database, FPw(m) > 0
if w > 0. On the other hand, we should not choose a factor of 1

|M | , because then a
singleton set {m} would always have the highest evaluation score. For this reason, we
chose a factor of 1√

|M |
. In the following, we will denote

• CFP0.5 as CFP,

• CFP1 as CF,

• and CFP0 as CP.

4.5 Planning with DBMP Macros
After identifying, generating, and pruning macros, we obtain a macro-augmented domain
that can be used to plan further problems. The macro-augmented domain is the original
domain with an additional action, as shown in Listing 4.14. The macro is represented
as a normal ADL operator. Thus, there is no need to modify the underlying planner.
Instead, we can call the planner as usual but give it the augmented domain instead of
the original domain.

4.5.1 Macro Expansion
The resulting plans contain macro actions. These need to be substituted by the action
sequence the macro was generated from, which we call macro expansion. Parameters
have to be instantiated according to the macro definition and the macro’s parameters.
In order to do this, we save additional information in the domain file when augmenting
the domain with a macro. This information contains:
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Listing 4.14: The macro goto-align to.
1 ; MACRO goto-align_to ACTIONS [goto,align_to] PARAMETERS [[1],[1]]
2 ( :action goto-align_to
3 :parameters ( ?p1 - location )
4 :precondition
5 (and (not(exists(?l - location)
6 (or (aligned ?l) (looking_at ?l))))
7 (not (robot-at ?p1))
8 (alignable ?p1 ?p1))
9 :effect

10 (and (aligned ?p1)
11 (robot-at ?p1)
12 (forall (?l - location)
13 (when (not (= ?p1 ?l))
14 (not (robot-at ?l)))))
15 )

• The name of the macro action.

• The action sequence that the macro represents.

• The parameter enumeration for each action in the sequence.

As an example, consider the macro that represents the action sequence <goto,align-to>
where the parameters of each action are assigned to the same macro parameter, i.e., the
resulting macro has only one parameter of type location. In the augmented domain,
the macro is represented as shown in Listing 4.14.

In order to translate a macro action in a plan back to the original action sequence,
we provide a wrapper for the planner that calls the planner, parses the planning result,
translates the macro into the action sequence, and then returns the translated plan. In
addition to translating macro actions, this provides the advantage that the resulting
plan is always of the same format, no matter which planner is used.
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In the following, we describe how we evaluated DBMP. First, we describe our lab
cluster setup, which allowed us to compute a large number of plans. Then, we describe
the domains that we used to evaluate DBMP. Next, we analyze our approach to macro
identification and generation, before we compare the DBMP performance to PDDL
planning without macros and to other macro planners. Finally, we have a look at our
approach to macro pruning using evaluation functions.

5.1 Kubernetes Lab Cluster
In order to be able to run a large number of planning tasks, we set up a Kubernetes
cluster as described in Section 2.9.4. The setup consists of seven machines with a Quad-
core Intel Core i7-3770 CPU @ 3.40GHz and 16GB memory each. We dedicated one
of the machines to be the cluster master and database server. The other six machines
served as cluster nodes. All domains, problems, and solutions are stored in the database,
as described in Section 4.1.

We used the cluster for two purposes: First, we computed seed plans in the cluster,
which where then used to generate macros. Second, we ran all benchmarks in the cluster.
For the seed plans, we limited all jobs to 60min runtime and 7GB memory usage. This
allows to run two concurrent jobs on each node, resulting in twelve parallel jobs in the
cluster. For benchmarks, we limited all tasks to 30min and 4GB memory, allowing three
concurrent jobs on each node and therefore 18 concurrent jobs in the cluster.

Since the machines are standard lab machines which are also used by other people,
we configured each machine in a way that whenever a user logs in, the machine would
stop all running jobs and disable scheduling of further jobs on the machine, until the
user logged out again. In this case, all running and pending jobs on that machine are
automatically rescheduled to other cluster nodes. This setup allows to fully use the lab
machines without disturbing other users. Additionally, we have a higher control over
available resources, because we only run jobs when no other user uses the machine.

Resources are managed by Kubernetes, as described in Section 2.9.4. This ensures that
each planning task has the same resources available. The cluster setup is automated with
Ansible (cf., Section 2.9.5). Although our cluster is relatively small compared to typical
setups with tens to hundreds of cluster nodes, it already proved to be very useful for our
purposes. The highly automated setup resulted in well-structured results and made it
possible to run 19666 planning tasks with a total runtime of 3856 hours.
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5.2 Domains
In this section, we describe the domains we used to evaluate DBMP.

Blocksworld Blocksworld is a STRIPS domain from the International Planning Com-
petition (IPC). The goal in Blocksworld is to rearrange a number of blocks such that
they are stacked in a certain order. As an example, one instance can be to arrange the
three stacked blocks b1,b2,b3 to be in reverse order, i.e., b3,b2,b1. In this variant
of Blocksworld, there is unlimited room on the table. For our evaluation, we used 100
generated blocksworld instances with 20 blocks in each problem.

Hiking Hiking is another STRIPS domain from the IPC. The setting is the following:
A couple wants to do a circular hike over several days. The couple has two cars available,
which must be used to carry luggage and their tent. Each day, the couple can do one leg of
the hike, and the tent has to be set up when the couple reaches the endpoint. Compared
to Blocksworld, Hiking has more actions, and each action has more parameters. This
additional complexity can also be seen in the results. For this domain, we used the 20
IPC 2014 demo problems [75].

Barman Barman is the third and most complex STRIPS domain from the IPC that we
used for our evaluation. In Barman, a robot has to mix a set of drinks using dispensers,
glasses, and shakers. Each drink consists of several ingredients that need to be mixed.
Additionally, the robot may only use clean and empty glasses, and it has a limited
number of hands, usually two. As for Hiking, we used the 20 IPC 2014 demo problems.

Cave Diving Cave Diving is an ADL domain from the IPC that also uses action costs.
In Cave Diving, there are a number of caves that are connected in the structure of an
undirected acyclic graph. There are number of divers whose task is to take pictures of
certain caves. There can be only one diver in a cave, and diving and taking pictures
uses air. Divers can also carry oxygen tanks, which they can leave in any cave for other
divers. Each diver has hiring costs and some divers refuse to work with other divers.
We use an adapted version of the IPC domain and its 20 demo problems. As we do not
support action costs, we removed any costs from the domain and use it without action
costs. This makes the domain simpler as we do not need to optimize the cost, but the
problem structure remains the same.

Cleanup In the Cleanup domain, a domestic service robot must clean up dishes by
putting clean dishes back onto the counter and dirt dishes into the dishwasher. It is an
adapted version of our robotics lab scenario [37]. Cleanup is an ADL domain that makes
heavy use of quantified and conditional effects. The original version of the domain has
also been executed on a real robot with a continual planner and execution monitor [35].
For this domain, we generated 230 problems with 1 to 20 cups and for each number n
of cups, we set 0 to n cups to dirty.
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RCLL The RCLL domain is a domain in the setting of the RoboCup Logistics League,
as described in detail in Section 2.6. It is an adapted version of a draft for the RoboCup
Logistics League Planning Competition at the ICAPS 2017 [57]1. This domain is par-
ticularly challenging because even small problems take a long time to solve or cannot be
solved by the planners that we used for our benchmark. Thus, generated macro actions
are based on solutions of the simplest problem instances only. For the RCLL domain,
we used a problem generator that produces random order of different complexity, from
C0 to C3. For each complexity, we generated 0 to 2 orders, resulting in 81 problems.

5.3 Seed Plan Generation
In order to generate seed plans, we ran either FF or Fast Downward on all problems
of each domain, and used all successful plans for macro seeding. For seed planning, we
limited the planner to 60min runtime and 7GB of memory. Table 5.1 shows the seeding
configurations and results for all domains.

Domain Seed Planner # Problems # Solutions Total Time (min)
Blocksworld FF 100 79 165

Hiking FF 20 15 164
Barman Fast Downward 20 20 1198

Cave Diving Fast Downward 20 7 83
Cleanup (FF) FF 230 85 408
Cleanup (FD) Fast Downward 230 35 555

RCLL Fast Downward 81 5 61

Table 5.1: The seed planning configuration and results for each domain. By default, we
used FF as seed planner. If FF could not find any seed plans, we switched
to Fast Downward. The total time is the run time for all successful plans.

5.4 Macro Identification
As described in Section 4.2, we use MapReduce to identify frequent action sequences. By
using MapReduce on the MongoDB database, we are able to count all occurring action
sequences in a reasonable time. As shown in Figure 5.1, counting all sub-sequences of
length 10 or less took 283s in the Cleanup domain. Identifying shorter sequences with
a length of 3 or less actions needed less than 10s in all domains. This is sufficiently fast
for an off-line step that is done only once per domain.

However, for the Hiking and the Barman domains, identification failed for longer ac-
tion sequences due to a combinatorial blowup in the parameter assignments and some
database limitations. As described in Section 4.2, the documents emitted in the Map
step contain a list of all possible parameter assignments for the given actions as shown

1The domain is available at https://github.com/timn/ros-rcll_ros.

https://github.com/timn/ros-rcll_ros
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Figure 5.1: The total time needed by the MapReduce operation to identify frequent ac-
tion sequences (logarithmic time scale). For all domains, the time to identify
sequences of length 3 was less than 10s. In the Blocksworld and Cleanup
domains, frequent action sequences up to a length of 10 actions could be
identified. For the other domains, the algorithm did not scale as well.

in Table 4.1. For actions with many parameters, there are a lot of possible parameter
assignments, and thus the emitted document can be quite large. In this case, the limita-
tions by the database can be quickly reached. As an example, when counting the action
sequences with a maximum length of 4 in the Barman domain, MongoDB’s MapReduce
fails with the following error:

exception: Error: an emit can’t be more than half max bson size

This is caused by the action sequence
<shake,pour-shaker-to-shot,pour-shaker-to-shot,empty-shaker>

In this case, the action sequence has 23 parameters and 33752 possible parameter as-
signments, which results in a document size larger than 8MB. The size limit for emitted
documents is half of the maximum document size, which is 16MB [51]. Therefore, doc-
uments of a size larger than 8MB cannot be used in MapReduce.

As a workaround, one can emit a document for each possible parameter assignment
instead of emitting a single document that contains all assignments. This results in much
smaller documents and the error does not occur anymore. However, this only defers the
error from the Map step to the Reduce step, which then fails with the error:

exception: value too large to reduce

Here, the Map step emitted too many documents with the same key. Since all documents
with the same key are merged into one document for reducing, the Reduce step fails again
due to the 8MB size limit for documents.
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A different solution is to stop emitting all possible parameter assignments. Instead,
we could emit only the most specific possible parameter assignment, and then compute
generalized parameter assignments in the next step. As an example, when encountering
the action sequence goto(m1), align-to(m1) in a plan, instead of emitting the enu-
meration [1],[1] and its generalization [1],[2], we would only emit the most specific
enumeration [1],[1]. However, since we also want to have the generalized action se-
quence as a candidate for macro generation, we would need to add another step after
the MapReduce operation to compute all possible generalizations of the identified action
sequences.

5.5 Macro Generation
As described in Section 4.3, we generate a PDDL representation of a macro by re-
gressing each precondition of the action sequence to the beginning of the sequence, and
by chaining all the effects of the actions. Macro generation is implemented in Prolog
and wrapped in a Python script that fetches the input data from the database, starts
the generator, and then saves the generated macros and augmented domains including
their evaluation scores in the database. As shown in Figure 5.2, macro generation is
sufficiently fast. In all domains, generating a single macro needs about 0.2s and the
generation time only slightly increases with a higher number of actions in the macro.
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Figure 5.2: Mean times to generate a macro of a given length.

Spot checks of the generated macros showed that the generated actions were indeed
macro representations of their respective action sequence, i.e., if the macro’s precondition
was satisfied, then the respective action sequence was executable, and the macro’s effect
were equal to the resulting effect of the action sequence.
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5.6 Planner Performance
In this section, we compare DBMP to other macro planners and to planning without
macros. In order to do so, we computed seed plans for all problems of each domain
with either FF or Fast Downward. From those seed plans, we identified the 10 most
frequent action sequences of lengths 2 to 5. For each parameter assignment of each of
these sequences, we generated a macro. For each macro, we generated an augmented
domain. Additionally, we generated an augmented domain for each distinct pair of macro
actions. From all those domains, we selected the 10 domains with the highest evaluation
score according to the evaluators introduced in Section 4.4. We used the following three
evaluators:

CFP Evaluates sets of macros according to their comparability, and each macro with
the sum of the macro’s frequency and its parameter reduction.

CF Evaluates sets of macros according to their comparability, and each macro with the
macro’s frequency. Parameter reduction is not taken into account.

CP Evaluates sets of macros according to their comparability, and each macro with the
macro’s parameter reduction. The macro’s frequency is not taken into account.

Note that, even though CP does not take the frequency into account, macros are still
selected according to the frequency, because only the most frequent action sequences are
selected for macro generation in the previous step.

After generating the macros, we ran all problems of each domain with FF on the
augmented domains. We compare FF + DBMP to FF without macros, and to the
macro planners Marvin and Macro-FF. All planners were limited to 30min and 4GB
memory. A performance overview can be seen in Figure 5.3. In the following, we have
a detailed look at the planning times and the resulting plan lengths.

5.6.1 Planning Times
The planning times for all domains and planners are shown in Table 5.2. For DBMP, we
use FF and the three evaluator functions described above. Additionally, the last column
gives the results for the fastest augmented domain, i.e., the domain that has the smallest
mean time over all problems (including failed problems). For each domain and planner,
we counted the number of solved problems and computed the mean planning time for all
solved problems (i.e., failed problems were not included in the mean). Additionally, we
computed the quartiles of the planning time over all problems (including failed problems).
The quartiles are “the three values that divide the items of a frequency distribution into
four classes with each containing one fourth of the total population” [49]. In this context,
the first quartile Q1 is the smallest time in which a quarter of the problems could be
solved, the second quartile Q2 is the median planning time, and the third quartile is
the smallest time in which three quarters of the problems could be solved. Note that
we use the quartiles over all problems. Thus, if only half the problems could be solved,
then the third quartile Q3 is undefined, which is denoted with ×. The symbol – marks
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(b) Hiking

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1  10  100  1000

C
o
m

p
le

ti
o
n
 Q

u
o
ti

e
n
t

Planning Time (s)

FF
Marvin

MacroFF
DBMP (CF)

(c) Barman
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(d) Cave Diving
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(e) Cleanup (FD)
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Figure 5.3: A comparison between FF, Marvin, Macro-FF, and DBMP in each do-
main. The completion quotient is the share of solved problems within the
given time.

domains that are not supported by the particular planner, and the symbol † marks
domains where the planner failed due to some error. For the sake of completeness,
we also added the planning times for Fast Downward to Table 5.2. However, as we
use a FD-configuration that is optimized for plan length and not for planning time, a
comparison of the planning times is not useful.
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FF + DBMP
FF FD Marvin Macro-FF CFP CF CP best

Blocksworld - 100 problems - seed: FF
# solved 76 100 93 100 100 100 100 100
mean (s) 22.0 1011 41.4 0.72 1.32 2.82 1.76 1.32

Q1 (s) 0.006 910 0.12 0.16 0.004 0.04 0.19 0.004
Q2 (s) 0.08 963 0.22 0.23 0.006 0.05 0.32 0.006
Q3 (s) 80.0 1054 0.62 0.40 0.011 0.088 0.79 0.011

Hiking - 20 problems - seed: FF
# solved 13 18 15 15 17 17 18 20
mean (s) 265 1339 244 349 321 287 170 37.7

Q1 (s) 77.5 1000 9.79 86.6 16.6 15.4 5.97 4.33
Q2 (s) 290 1798 263 339 100 141 83.4 10.6
Q3 (s) × 1800 1649 1751 1303 1094 232 61.4

Barman - 20 problems - seed: FD
# solved 0 20 6 0 18 18 0 19
mean (s) × 1798 124 × 17.2 17.2 × 23.2

Q1 (s) × 1798 285 × 10.6 10.6 × 6.07
Q2 (s) × 1799 × × 16.1 16.1 × 10.2
Q3 (s) × 1800 × × 18.4 18.4 × 29.0

Cave Diving - 20 problems - seed: FD
# solved 0 7 0 0 0 7 4 7
mean (s) × 644 × × × 4.77 1107 3.85

Q1 (s) × 804 × × × 6.11 × 6.07
Cleanup - 230 problems - seed: FF

# solved 78 27 – † 62 88 71 152
mean (s) 127 212 – † 154 138 125 143

Q1 (s) 71 × – † 71 13.7 190 0.42
Q2 (s) × × – † × × × 54.3

Cleanup - 230 problems - seed: FD
# solved 78 27 – † 108 108 68 152
mean (s) 127 212 – † 87 87 140 82

Q1 (s) 71 × – † 2.39 2.39 249 0.36
Q2 (s) × × – † × × × 35.9

RCLL - 81 problems - seed: FD
# solved 4 5 3 † 4 4 4 4
mean (s) 0.156 396 0.74 † 0.255 0.255 0.232 0.094

Table 5.2: A comparison of planning times between different planners with and with-
out macros. CF, CFP, and CP denote the three best macro configurations
according to the three evaluators, the best DBMP configuration in the last
column are the results for the domain with the lowest mean planning time.
The symbol ’×’ denotes undefined values, ’–’ denotes that the planner does
not support the domain, and ’†’ denotes an error by the planner. Rows with
no values have been omitted. The best value per row is indicated in bold face.

Comparison to Planning without Macros As shown in Table 5.2, DBMP clearly out-
performs FF in most domains. In the Blocksworld domain, DBMP could solve all 100
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problems, while FF could only solve 76 problems. Additionally, the mean planning time
differs by a factor of 16 with 22s for FF and 1.32s for DBMP with the best macro
configuration. The biggest performance difference can be observed in the third quartile:
While FF needed 80s to solve three quarters of the problems, DBMP with the best
macro configuration took only 0.011s to solve the same number of problems. Even with
the CP evaluator, which performed worst in Blocksworld, DBMP still outperforms FF
by a factor of 12.

The Hiking domain shows similar results, albeit in a smaller magnitude. With all
evaluators DBMP was able to solve more problems than FF. Additionally, all quartiles
of the DBMP solutions are smaller than the quartiles of FF. Interestingly, the mean
planning times of CFP and the CF are higher than the mean planning time of FF
without macros. Presumably, this is because the two additional problems that were
solved by DBMP have a high planning time, and therefore lead to a higher mean time,
as we compute the mean only over the solved problems.

The results for the Barman domain show that FF can benefit from DBMP with
Fast Downward seed plans even if FF is not able to solve any of the original problems.
Without macros, FF could not solve any of the Barman problems. With DBMP macros,
it could solve 18 of the 20 problems with the CFP and CF evaluators and even 19 with the
best macro configuration. Interestingly, with macros, FF was able to solve the problems
quite fast, with a mean planning time of 23.2s and a third quartile of 29s. Thus, macro
actions simplify the domain to a great extent.

The results for Cave Diving are very similar. FF cannot solve any problems without
macros, but it benefits from DBMP with FD-seeding. With DBMP, FF could solve 7
of the 20 problems with a mean time of 3.85s in the best configuration.
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Figure 5.4: DBMP with FF seeding compared to FF without macros in the Cleanup
domain (logarithmic scale). Although DBMP performs better than FF, the
planning time increases proportionally to the FF planning time.
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The Cleanup domain shows that planning in a robotics application can also benefit
from DBMP. First, consider the Cleanup domain with FF-seeding as shown in Fig-
ure 5.4. In the CF configuration, DBMP was faster and could solve more problems
than FF without macros. The difference is even bigger in the best configuration, where
DBMP could solve 152 of the 200 problems with a planning time of 0.42s in the first
quartile. However, in the other configurations, DBMP performed worse.
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Figure 5.5: DBMP with FD seeding in comparison to planning without macros in the
Cleanup domain (logarithmic scale). In this domain, FD brings a clear
advantage over FF seeding (cf. Figure 5.4).

When looking at the performance of DBMP in the Cleanup domain with Fast Down-
ward as seed planner as shown in Figure 5.5, we see that combining two planners can
bring a significant performance benefit. In the configuration we used, Fast Downward
primarily tries to find short plans with the cost of longer planning times. Since we gen-
erate seed plans off-line, longer seed planning times do not impair the performance. But
the planner can gain from the shorter seed plans, as the seed plans also contain better
sub-sequences. As an example, with FF as seed planner, a seed plan may contain the
action sequence

<pick-up(cup1),put-down(cup1),pick-up(cup1)>

which is a useless sub-sequence. When using Fast Downward as seed planner, such
sub-sequences are much rarer and the resulting plans are shorter. Thus, the generated
macros are also of higher quality, which results in better planning performance: In the
CFP configuration, DBMP can solve 108 of 230 problems with FD seed plans instead
of 62 problems with FF seed plans, and those plans are computed in a shorter time.

Finally, in the RCLL, the number of solved problems does not increase and the mean
planning times are worse for all configurations but the best one. We assume this is
because there are four RCLL problems which consist of a single order, while all other



5 Evaluation 73

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

P
la

n
n
in

g
 T

im
e
 (

s)

Problem

Marvin MacroFF DBMP (CFP)

Figure 5.6: A comparison of the three macro planners Marvin, Macro-FF, and DBMP
with the best CFP configuration in the Blocksworld domain. While DBMP
performed best on most problems, it has more outliers with a long planning
time, leading to a higher mean planning time than Macro-FF.

problems contain multiple orders. Thus, the differencce in difficulty between these four
problems and the other problems is severe. Apparently, FF can solve these four problems
even without macros, while macros do not add enough benefit to solve a more complex
problem. Only in the best configuration, DBMP plans faster than FF.

Comparison to other Macro Planners We now compare the planning times of FF
with DBMP to other macro planners, in particular to Marvin and Macro-FF. For
this comparison, we used Marvin without a macro repository, i.e., we only used on-line
macro generation, and we used Macro-FF in the Solution-Enhanced Planner (SOL-EP)
variant, which generally supports ADL domains. The results are shown in Table 5.2.

In the Blocksworld domain, we can see that DBMP and Macro-FF can solve all
100 problem instances, while Marvin can only solve 93 problems. Figure 5.6 shows the
three macro planners in comparison. The planning times of DBMP are better than the
planning times of Marvin, and for most problems, DBMP also performed better than
Macro-FF. However, for one problem DBMP needed more than 100s. For this reason,
the mean time for DBMP is higher than for Macro-FF. In the worst configuration,
DBMP has a mean planning time of 2.82s, while Macro-FF could solve a problem in
0.72s in average. Thus, while DBMP performed better on most problems, Macro-FF
performed best in average.

In the Hiking domain, all configurations of DBMP could solve more problems than
Marvin and Macro-FF. Marvin performed better in the first quartile with 9.79s
compared to 86.6s of Macro-FF and 16.6s of DBMP (CFP). However, in the second
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and third quartile, DBMP has a smaller planning time than the other two planners. All
macro planners performed better than FF.

The Barman domain shows interesting results which can be explained with the dif-
ferent approaches of the macro planners. Since FF could not solve any of the problems,
Macro-FF could not solve any problem either. This is because Macro-FF is an off-
line macro planner that generates macros after solving a problem. If the planner cannot
solve any problem instance, it cannot generate any macros to solve the more difficult
problems. In contrast, Marvin is an on-line macro planner that uses macros to escape
plateaus (cf., Section 3.4). Thus, even though FF could not solve any problems and
Marvin is based on FF, it was still able to solve 6 of the 20 problems. Since DBMP
can use seed plans from any planner, it does not rely on FF. Instead, it uses Fast
Downward for seed plans, which allowed DBMP (CFP) to solve 18 of the 20 problems
of the domain. We conclude that cross-planner macro generation is indeed useful.

A similar effect occurs in the Cave Diving domain, where both Macro-FF and Mar-
vin could not solve any problems, while DBMP could solve 7 of the 20 problems.

In the Cleanup domain, DBMP was the only macro planner that could solve any
problem. Marvin does not support disjunctive goal formulas and therefore does not
support the domain. While Macro-FF generally supports ADL domains, running it
on a problem from the Cleanup domain always resulted in a segmentation fault. Thus,
it could not be used for this domain despite the general support for ADL.

In the RCLL domain, Marvin could only solve 3 problems and solved the problems
with a higher mean planning time than DBMP. Macro-FF failed with the same error
as in the Cleanup domain. While DBMP did not perform better than FF without
macros, it was the best-performing macro planner in this domain.

In summary, DBMP solves more problems in a shorter time than the other macro plan-
ners in most domains. Furthermore, DBMP supports all evaluated domains, while the
other planners only implement ADL partially (Marvin) or fail with an error (Macro-
FF). Third, in contrast to the other planners, DBMP computes a PDDL representation
of macros, which allows to swap the underlying planner.

Differences to Previous Results When comparing the results in Table 5.2 to previous
results of DBMP restricted to STRIPS (DBMP/S) [36], some differences can be no-
ticed. In particular, the results of DBMP differ in both the number of solved problems
and in planning time. There are several changes that may cause those differences:

• The version of DBMP presented in this thesis is a generalization of DBMP/S,
which only supports STRIPS actions. Thus, the resulting preconditions and effects
of macro actions may differ, even for STRIPS actions.

• In the previous results, all domains were augmented only with a single macro. In
this thesis, we augment domains with multiple macro actions.

• In this thesis, macro actions are selected by evaluation functions, while the macros
used previously were hand-picked. More specifically, in DBMP/S, the macro with
the highest occurrence count and the most specific parameter assignment was used.
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• For the Blocksworld and Hiking domains, this thesis uses FF for seeding, while we
always used Fast Downward in DBMP/S.

5.6.2 Plan Lengths
The plan lengths for all domains and planners are shown in Table 5.3. Assuming unit
costs for actions, shorter plans are better. As for planning times, we used DBMP
with FF and the three evaluators CFP, CF, and CP. Additionally, the last column
gives DBMP configuration with the lowest mean plan length over all successfully solved
problems. For each planner, we counted the number of solved problems and computed
the mean plan length for all solved problems (i.e., failed problems were again not included
in the mean). Additionally, similar to the planning times, we computed the quartiles of
the plan lengths over all problems (including failed problems).

Comparison to Planning without Macros We first compare the plan lengths DBMP
of solutions to planning without macros. As we use a FD-configuration optimized for
plan length, Fast Downward found the most and also the shortest solutions, but in a
longer time (cf., Section 5.6.1). In the following, we compare DBMP and FF.

In the Blocksworld domain, we can see that DBMP had longer plan lengths in all
configurations but the best one. As an example, the mean plan length for CFP is 72,
while the mean plan length of FF without macros is 63. The best CP configuration
performed even worse with a mean plan length of 144 actions. Only in the best config-
uration, the plan lengths of DBMP were shorter than the plans lengths of FF without
macros, especially in the third quartile with 66 actions compared to 86 actions. Gen-
erally, the Blocksworld domain suggests that DBMP planning should not be used for
simple problems such as most of our Blocksworld problems. This is because for simple
problems, FF can find near-optimal solutions in a reasonable time even without macros.
As macros may contain unnecessary actions, plan lengths increase unnecessarily. For
more difficult problems, this effect is compensated by the fact that FF without macros
does not find good solutions anymore, while using macros simplifies the problem and
thus leads to better solutions. This is why in the best configuration and with CFP and
CF, DBMP has a shorter plan length in the third quartile.

In the Hiking domain, DBMP performed slightly better. While the plan length in the
first quartile is higher for all DBMP configurations, it is lower in the second quartile.
Generally, in the Hiking domain, the plan lengths of FF without macros and FF with
DBMP do not differ much.

In the Barman and Cave Diving domains, no comparison regarding plan length is
possible, as FF without DBMP could not find any solutions.

In both Cleanup domains, the difference between FF without macros and FF with
DBMP is small. Note that the mean plan length mainly differs because FF with DBMP
could solve more problems than without DBMP. Looking at the first quartile, both
planners performed similarly.

In the RCLL domain, using DBMP macros reduced the plan length slightly. In the
best configuration, DBMP performed better with 33 actions compared to 38 actions.
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FF + DBMP
FF FD Marvin Macro-FF CFP CF CP best

Blocksworld - 100 problems - seed: FF
# solved 76 100 93 100 100 100 100 100

mean 63 59 129 190 72 72 144 63
Q1 58 50 104 150 64 64 113 61
Q2 65 58 122 175 70 70 139 64
Q3 86 65 166 211 80 80 172 66

Hiking - 20 problems - seed: FF
# solved 13 18 15 15 17 17 18 15

mean 55 47 119 117 60 60 64 56
Q1 51 34 104 105 53 52 52 52
Q2 64 42 132 132 63 63 60 60
Q3 × 65 × × 78 79 74 ×

Barman - 20 problems - seed: FD
# solved 0 20 6 0 18 18 0 13

mean × 214 345 × 178 178 × 175
Q1 × 199 381 × 170 170 × 169
Q2 × 220 × × 178 178 × 182
Q3 × 234 × × 195 195 × ×

Cave Diving - 20 problems - seed: FD
# solved 0 7 0 0 0 7 4 8

mean × 23 × × × 23 25 23
Q1 × 23 × × × 23 × 23

Cleanup - 230 problems - seed: FF
# solved 78 27 – † 62 81 71 67

mean 95 49 – † 105 96 87 85
Q1 126 × – † 175 123 118 121

Cleanup - 230 problems - seed: FD
# solved 78 27 – † 108 108 68 65

mean 95 49 – † 112 112 86 84
Q1 126 × – † 123 123 121 123

RCLL - 81 problems - seed: FD
# solved 4 5 3 † 4 4 4 4

mean 38 26 44 † 35 35 35 33

Table 5.3: A comparison of the resulting plan lengths of all planners in all domains. As
before, CF, CFP, and CP denote the DBMP domains with the highest respec-
tive score, and the last column gives the values for the macro configuration
with the shortest mean plan length. The symbol ’×’ denotes undefined values,
’–’ denotes that the planner does not support the domain, and ’†’ denotes an
error by the planner. Rows with no values have been omitted. The best value
per row is indicated with bold face.

Concluding, we can say that DBMP does not improve resulting plan lengths, but
especially for simpler problems, may lead to longer plans. For more difficult problems,
the difference between FF without macros and DBMP disappeared.
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Comparison to other Macro Planners We now compare the resulting plan lengths of
FF with DBMP to Marvin and Macro-FF. As before, we use Marvin without the
macro repository and Macro-FF in the SOL-EP variant.

In Blocksworld, we can see that DBMP generates the shortest plans of all macro
planners. The mean plan length of DBMP with CFP is 72 actions, compared to 129
actions of Marvin and 190 actions of Macro-FF. The difference is even larger in the
third quartile, where DBMP with CFP needed 80 actions, while Marvin needed 166
actions and Macro-FF even 211 actions to solve three quarters of the problems.

We obtain a similar result in the Hiking domain. While the mean plan length of
DBMP in all configurations is similar to the mean plan length without macros, both
Marvin and Macro-FF need twice as many actions in average. This difference seems
to be unrelated to the difficulty of the problem: Even in the first quartile, Marvin needs
104 actions and Macro-FF 105 actions compared to 51 actions of FF without macros
and 53 actions of DBMP in the CFP configuration.

In the Barman domain, we can see that the plans generated by Marvin have a much
higher length than the plans generated by DBMP. Additionally, we can see that the
plan lengths for DBMP do not get much higher with increasing difficulty. While the
plans of Marvin have a length of 381 actions in the first quartile, DBMP only needed
170 actions in the first quartile and only 195 actions in the third quartile. Similarly, in
the RCLL domain, Marvin produced the longest plans in average.

Summarizing, planning with DBMP does not increase plan lengths significantly, while
other macro planners produce much longer plans than FF with and without DBMP
macros.

5.7 Macro Pruning with Evaluators
In this section, we analyze whether the evaluators indeed select the best macro config-
uration. In particular, we compare the three evaluators CFP, CF, and CP. In order
to do so, we computed the ten best macro configurations for each domain according to
each evaluator and then ran all problems with the augmented domains. For an optimal
evaluator, a higher-scoring domain would always perform better than a lower-scoring
domain, and the ranks of the score and the planner performance would be identical.
The correlation between the ranks of two datasets can be computed with the Spearman
correlation coefficient (SCC) [82]. To analyze evaluators, we compute the SCC between
evaluation score and planning time, and between evaluation score and successfully solved
problems. For two datasets X and Y , the Spearman correlation coefficient is computed
by first ranking X and Y from smallest to largest with resulting rankings RX and RY .
Given the two rankings, the Spearman correlation coefficient rS is defined as

rS = cov(RX , RY )
σRX

σRY

where cov(RX , RY ) is the covariance of the ranks and σRX
(σRY

) is the standard devi-
ation of RX (RY ).
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planning time # solved
CF CFP CP CF CFP CP

Blocksworld -0.185 -0.154 0.196 0.307 0.347 -0.007
Hiking -0.008 -0.015 -0.116 0.051 0.097 0.284

Barman -0.412 -0.312 0.558 0.426 0.321 -0.611
Cave Diving 0.079 0.167 0.068 -0.100 -0.257 -0.098

Cleanup (FF) 0.040 0.041 -0.025 -0.123 -0.130 -0.240
Cleanup (FD) 0.051 -0.136 0.052 0.682 0.691 -0.425

RCLL 0.004 0.003 -0.004 0.000 0.000 0.000

Table 5.4: The Spearman Correlation Coefficients between the three DBMP evaluators,
resulting planning times and number of solved problems for all domains. For
the planning time, the lower the SCC the better (with −1.0 being optimal)
as this corresponds to higher scores for faster planning times. Conversely, for
the number of solved problems, the higher the SCC, the better the evaluator
(with an optimal SCC of 1.0).
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Figure 5.7: The CF evaluator compared to the mean planning time for Blocksworld with
a weak negative Spearman correlation coefficient of rS = −0.185.

The results shown in Table 5.4 are mixed. First, we look at the correlation of the
evaluation score and planning time. For the CF evaluator, we can see moderate correla-
tion between evaluation score and planning time in the Barman domain (rS = −0.412)
and weak correlation in the Blocksworld domain (rS = −0.185), which is also shown in
Figure 5.7. In the other domains, there is no or only very weak correlation. Looking
at the CFP evaluator, the results look similar but not as strong as CF. With the CP
evaluator, higher scores correlate with higher planning times weakly in Blocksworld and
moderately in Barman. Thus, CP is an unsuitable evaluator, at least in these domains.

Next, looking at the number of solved problems, we can see a weak correlation between
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Figure 5.8: The CF evaluator compared to the quotient of solved problems for Cleanup
with FD-seeding, which strongly correlate (rS = 0.682).

higher CF scores and a higher number of solved problems for Blocksworld (rS = 0.307),
a moderate correlation for Barman (rS = 0.426), and a strong correlation for Cleanup
with FD-seeding (rS = 0.682), which is also shown in Figure 5.8. Thus, CF is a suitable
evaluator in those domains. The results for CFP scores look again similar, with a higher
correlation in Blocksworld (rS = 0.347) and Cleanup with FD-seeding (rS = 0.691), but
a lower correlation in Barman (rS = 0.321). Finally, higher scores of CP moderately
correlate with a lower number of solved problems in Barman (rS = −0.611) and Cleanup
with FD-seeding (rS = −0.425) and weakly correlate in Cleanup with FF-seeding (rS =
−0.240). Thus, CP is an unsuitable evaluator in those domains.

In summary, CF performs rather well in Blocksworld and Barman concerning both
planning time and number of solutions, and it performs well concerning the number
of solutions in the Cleanup domain with FD-seeding. In the other domains, CF could
not predict good planning performance. The performance of CFP is similar but not
as strong. Finally, CP is a rather unsuitable evaluator overall. We can conclude that
macro frequency is a relevant factor for selecting macros, more than parameter reduction.
However, other performance measures may also be relevant. As one example, we could
add the number of conditional effects and disjunctions in macro actions as a negatively
weighted factor, because for most planners, conditional effects and disjunctions impair
the planner’s performance. As another potential improvement, we can weight occurrence
counts according to the time needed to compute the plan in which the action sequence
occurs. This would mean that action sequences that occur in solutions for difficult
problems would get a higher weight than action sequences of simple solutions, resulting
in macros that are mainly useful for solving harder problem instances.



6 Conclusion
We summarize our approach to database-driven macro planning (DBMP) and describe
possible improvements both considering its performance and formalization.

6.1 Summary
Database-driven macro planning (DBMP) extracts and generates macros – concate-
nated action sequences – from a database of previous planning results and is motivated
by the observation that plans typically contain the same patterns of actions, especially
in robotics domains such as the RCLL or Cleanup. We exploit those recurring patterns
by storing all previous planning results in a plan database and identifying frequent ac-
tion sequences with the MapReduce paradigm. Common parameters in the actions of
such a sequence are coalesced to reduce the search space expansion caused by the addi-
tional macros. In contrast to other macro planners, DBMP represents macros as normal
PDDL operators with proper preconditions and effects while supporting the full ADL
fragment of PDDL. Thus, we can use DBMP on domains that require features such
as disjunctive and quantified preconditions and conditional effects without modifying
the underlying planner, which makes the planner exchangeable. Based on a declara-
tive ADL semantics in ES, we provide definitions for a regression operator R1, which
regresses a precondition formula on a sequence of effects, and a chaining operator C,
which combines effects of an operator sequence. We use those operators to compute the
PDDL representation for a macro. After generating macros, we select the best macros
with macro evaluators, which assign a score to each macro configuration based on the
macros’ frequency, parameter reduction, and complementarity. The selected macros are
added to the original domain, which is then used to solve further planning tasks. In a
final step, macros in plans resulting from the macro-augmented domains are expanded
into the original action sequence so the plan can be executed by the agent.

We have provided a detailed evaluation of DBMP, both in comparison to planning
without macros and to the macro planners Marvin and Macro-FF. We have demon-
strated that containerization with Docker and Kubernetes simplifies large-scale bench-
marks of planning tasks. With this setup, we were able to run 19666 planning tasks with
a total runtime of 3856 hours in a well-controlled environment. The results show that
DBMP can successfully use previous planning results to enhance planner performance.
DBMP clearly outperforms planning without macros, it is able to solve more problems
and it solves them in a shorter time. Furthermore, the resulting plans are of similar
quality, as using macros does not result in longer plan lengths. In comparison to other
macro planners, DBMP is in clear advantage in most domains and it is the only planner
that could solve problems in all domains. In a robotics context, a robot can improve its
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performance by learning macros over time and by computing seed plans off-line, which
improves the more crucial run-time performance.

Summarizing, DBMP significantly improves planner performance by adding macros
based on frequent action sequences in a plan database and it represents those macros as
PDDL operators, which allows to swap the underlying planner without modifications.

6.2 Future Work
So far, DBMP is a stand-alone planner that can be used like other PDDL planners. As
a next step, it may be useful to integrate DBMP into a robot software framework such as
Fawkes (Section 2.7) and combine it with an agent knowledge database such as the robot
memory (Section 2.8.2). Furthermore, extending DBMP beyond ADL with temporal
aspects or conditional planning may provide benefits, especially in robotics applications
such as the RCLL. Third, so far we have only used FF to plan with macro-augmented
domain. The approach should be tested with other PDDL planners in order to verify
the substitutability of the underlying planner.

In Section 4.3, we defined a macro representation m of an operator sequence σ, where
m is a macro representation of σ if (1) the precondition of m entails that σ is executable,
and (2) the results of executing m are the same as executing σ. We described how to
generate macros with effect regression and effect chaining. It remains to be shown
that the result of effect regression and chaining is indeed a macro representation of the
respective operator sequence. To do this, we should first investigate the relation of effect
regression to regression in ES and compare effect chaining to the regression operator
defined by Zarrieß and Claßen [79], before we analyze whether effect regression and
effect chaining indeed results in a macro representation.

For effect chaining, we put two restrictions on the effect formulas of the chained oper-
ators. First, we require all effects to be properly quantified, i.e., we do not allow effect
formulas such as e = ∀o:τ.p(o)⇒ q(a), where the quantifier ranges only over a condition
of a conditional effect. Second, we do not allow the chaining of two ∀-quantified effects
if one quantifier ranges over a sub-type of the other, e.g., C(∀o:obj. p(o),∀o:thing.¬p(o)),
where thing is a sub-type of obj. To lift the first restriction, it may be possible to
translate all effects into properly quantified effects. We have shown in Section 4.3 that
we can translate the effect e = ∀o:τ. p(o) ⇒ q(a) into the properly quantified effect
em = (∃o:τ p(o))⇒ q(a), assuming there is always an object of type τ . A generalization
of this approach may remove the first restriction. Alternatively, we can adapt the defi-
nition of the chaining C such that it also computes the correct resulting effect for effects
which are not properly quantified. The second restriction cannot be lifted without fur-
ther modifying the domain. However, adding complementary sub-types to the domain
may allow statements such as “object o is of type obj but not of its sub-type thing”.

Concerning the evaluators, we have seen that the evaluator CF provides a good macro
evaluation for some domains, but fails in others (cf., Section 5.7). To improve macro
evaluation, it may be useful to consider other macro properties, such as the number of
disjunctions and conditional effects in the macro’s precondition and effect.
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