
Rheinisch-Westfälische Technische Hochschule Aachen
Knowledge-based Systems Group
Prof. Gerhard Lakemeyer, Ph.D.

Master’s Thesis

Transforming Robotic Plans with
Timed Automata to Solve Temporal

Platform Constraints

Tarik Viehmann

December 16, 2019

Advisor: Till Hofmann, M.Sc.
Supervisors: Prof. Gerhard Lakemeyer, Ph.D.,

Prof. Erika Ábrahám, Ph.D.

2

Acknowledgements
I want thank Till Hofmann, who not only only did an excellent job at supporting
me throughout the span of this thesis with helpful discussions, critical feedback
and guidance to manage my work, but also got me hooked up with the field of
robotics in the first place allowing me to learn and gather a lot of invaluable ex-
perience so far and for the time to come.
I also am also very grateful for the discussions with Victor Mataré, who also gave
me much appreciated feedback and made me consider many details towards the
practical feasibility of my work. I wish to express my sincere thanks to Stafan
Schupp for helping me in early stages of this thesis to get ideas on approaches to
tackle the tasks i was facing.
I also humbly thank Professor Gerhard Lakemeyer for jointly supervising this the-
sis with Professor Erika Ábrahám, which I greatly appreciate.
I want to thank the whole Carologistics Team for the awesome experience of com-
peting at the RoboCup in Sydney and Montreal, which also provided me with
valuable insights for this thesis.
Finally, I would like to thank my friends and family for their support and encour-
agement.

3

Contents
1 Introduction 5

2 Preliminaries 8
2.1 Timed Automata . 8

2.1.1 Syntax . 8
2.1.2 Semantics . 10
2.1.3 Region Graphs . 11
2.1.4 Zone Graphs . 12
2.1.5 Difference Bound Matrices 14
2.1.6 Complexity Results . 16
2.1.7 Extensions . 16

2.2 Model Checking . 17
2.2.1 TCTL . 18

2.3 Model Checking Tools . 19
2.3.1 UPPAAL . 20
2.3.2 verifyta . 21

2.4 Metric Temporal Constraints in t-ESG 22
2.4.1 Syntax of t-ESG . 23
2.4.2 Semantics of t-ESG . 25

2.5 Agent Programming in GOLOG . 28
2.5.1 golog++ . 29

2.6 Related Work . 30
2.6.1 Model Checking and Planning 30
2.6.2 Timed Automata in Planning Domains 32

3 Constraint-Based Plan Transformations 34
3.1 Requirements and Objectives . 34
3.2 Overview of the Procedure . 38
3.3 Platform models as Timed Automata 39
3.4 Constraints . 40

3.4.1 Constraints Based on the Occurrence of Actions 41
3.4.2 Constraints Based on the Duration of Actions 45
3.4.3 Constraints from the High-Level Domain 47

4 Plan Synthesis as Reachability Problem 50
4.1 Direct Encoding . 50

4.1.1 Encoding Example . 51
4.1.2 Auxiliary Functions . 61
4.1.3 Encoding occ(β,GIα) . 63
4.1.4 Encoding occ(β, α1UIα2) . 66
4.1.5 Encoding occ(β,HIα) . 67

Contents 4

4.1.6 Encoding occ(β, α1SIα2) . 68

4.1.7 Encoding uc(B, β1, β2) . 68

4.1.8 Merging Encodings of Different Models 72

4.2 Modular Encoding Using Communication Between Automata 74

5 Synthesizing Executable Plans 78

5.1 Calculating Execution Start Intervals 80

5.2 Recalculating Action Start Times 81

6 Evaluation 83

6.1 Benchmark Domain . 83

6.1.1 High-Level Temporal Constraints 85

6.2 Platform Models . 85

6.2.1 Perception Unit . 85

6.2.2 Axis Calibration . 87

6.2.3 Communication Interfaces 87

6.3 Platform Constraints . 88

6.4 Benchmarks . 90

6.5 Improvements and Limitations . 93

7 Conclusion 94

5

1 Introduction
When using planners to solve robotic tasks, a programmer has to model the domain
of interest. This includes the current state of the world, possible actions a robot
can perform and the effects of those actions. However, it is often problematic
to specify the behavior of a robot based on high-level domain features alone, as
lower level components may impose constraints on the executability of high-level
actions. As an example we consider a production line with assembling stations
operated by autonomous robots, where a product is determined by the order and
type of assembling steps it goes through. A robot can pick up materials from and
deliver them to the available stations. On an abstract level one could model the
domain by treating the stations as black boxes and defining three robot actions:
put, pick and goto. Such an abstraction does not include any hardware specifics
yet, like the control of an robotic arm or the operation of an attached perception
unit that detects the objects to pick up or drop down.

Calls to low-level interfaces are typically hidden from the top-level agent framework
and invoked transparently without applying any explicit reasoning. The control
flow is asserted from domain actions to the interfaces that control the hardware,
e.g, gripper movements to physically grab an object are invoked when the agent
decides to pick something up. Responses such as sensor data or control feedback
are propagated up to the high-level reasoner that may react based on the gathered
input. While often such simple action- and reaction-based connections between
the robotic platform and the high-level reasoner suffices, problems occur once the
low-level control patterns depend on the domain context.

If in the above production line scenario the robot may have a perception unit that
is shut off to save energy and only has to be turned on in advance before performing
any grasping task. This cannot be handled within low-level implementations easily
without either wasting time at each pick (turning it on when the robot decides to
pick, then wait until it is ready, then perform the pick) or wasting energy (turning
it on, e.g., while moving when close to the destination, but then it gets turned on
when it might not be needed if no pick follows after a move). The essential problem
here is that the perception handling is dependent on the context determined by
the high-level reasoner.

One option is to lift the low-level control up to the domain of reasoning, such
that an agent may actively decide to turn the camera on, when it is deemed
necessary. However, this has major drawbacks as identified by Hofmann et al. [46]:
Firstly, it increases the domain of reasoning and thus affects the performance when
determining the course of action, e.g., by means of a planner. Secondly, mixing
hardware-specific control with high-level domain knowledge requires expertise in
two different fields of robotics that may be maintained by different people. Any
change within either of the layers is bound to affect the respective other one as

1 Introduction 6

well. It is usually desired to decouple the low-level specifics from the abstract
domain to gain re-usability for other robots built with different hardware as well
as robustness to hardware changes of the current robot.

In general we face the following modeling problem: On the one hand, a program-
mer of the high-level behavior usually does not want deal with all the low-level
constraints when designing the domain, and on the other hand, those imposed con-
straints may depend on the abstract tasks that are solved. If the low-level specifics
are handled at the behavior level, a hardware designer has to adapt the high-level
agent code when modifying components. Dealing with those constraints within
low-level software is often not feasible as well, since they might require adaptions
of- or depend on the agent’s plans.

Based on Hofmann et al. [46] it is the goal of this thesis to develop a procedure
that allows to model platform specifics separately form the abstract domain, in
order to gain modularity and to establish a clear separation of concern, while also
accounting for relations between the execution context and the low-level controls.
The task is tackled by developing a plan transformation that unifies the different
constraints imposed by the platform-specific interfaces on the one side and the
high-level reasoning framework on the other side. We are particularly interested
in the modeling of precise temporal relations between the two entities, which is
why we base our approach on two formalisms that are suitable to model expressive
temporal behavior.

Timed automata [4] are considered to specify the control flow of hardware inter-
faces, allowing to model processes acting upon continuous real-time. In the above
example of a control unit for the robot’s vision, it may useful to model details,
such as minimal time span that has to elapse when the sensors are powered on, in
order for them to produce reliable data.
To formulate behavioral patterns of those platform-specific models within a given
domain context, we utilize the semantics of the metric temporal logic t-ESG [45].
It allows to specify statements that are capable of arguing about the structure of
plans, which we utilize in two ways: Firstly, formulas may be defined to postulate
the requirements imposed on the executability of domain plans based on low-level
specifics. Thereby, a theoretical foundation of the proposed plan transformation
is established that is concerned with the extension of domain plans by hardware-
specific control patterns that satisfy those requirements. Returning to the control
of a perception unit, a formula may state that in advance of any grasping action
the camera has to be turned on. A plan 〈goto, pick〉 that first drives to a location
before picking up an object needs to be extended, such that the camera is already
powered towards the end of the execution of goto.
t-ESG formulas may also be utilized to provide an interface between the reason-
ing framework and a plan transformation satisfying platform constraints: The
top-level agent may express domain-specific concerns regarding the temporal con-
straints that have to hold in order to prove an abstract plan feasible in the scope
of the domain of reasoning. One use case of such a formula could be to express
that between goto and pick there may not be any idle time allowed, such that

7

a plan transformation cannot force the robot to wait in between those actions in
order to turn on the perception unit after the execution of goto.

Having platform models defined as timed automata on the one side and an ini-
tial abstract plan in the form of an action sequence provided by the high-level
reasoner on the other side, together with t-ESG formulas in between to guide the
platform control during the plan, the different concerns have to be unified in or-
der to determine possible executable plans. We accomplish this by subsequently
converting all constraints into the formalism of timed automata with the goal to
obtain a single automaton with a designated state that is reachable precisely by
those paths inducing transformed plans that satisfy the different concerns. As a
starting point, a given abstract plan may be converted into an automaton with
a state that models the successful high-level execution of it. This automaton is
then iteratively modified, until it also includes all necessary information concern-
ing the platform specifics during execution. The modifications are done in such a
way that the possible runs through the system correspond to the different possi-
ble plans that are executable according the specified constraints. The problem of
finding a transformed plan then equates to utilizing existing model checking tools
to solve a reachability task on the constructed automaton. Thereby, the proce-
dure developed within this thesis utilizes similarities that classical planning and
scheduling tasks share with model checking tasks of timed automata, hence the
resulting approach fits under the umbrella of the well-known planning via model
checking paradigm [27, 39].

The remainder of this thesis is structured as follows. In Section 2 we introduce
the formalism of timed automata, give an overview over model checking tasks and
the model checking tool landscape for timed automata and also introduce to the
situation calculus variant t-ESG as well as its application in GOLOG programs. We
proceed by presenting other work utilizing similarities between model checking and
planning tasks and compare them to our proposed application. Then in Section 3
we outline the responsibilities and restrictions of the proposed plan transformation
and present a constraint language as subset of t-ESG that may be utilized to for-
malize the requirements on those transformation tasks. In Chapter 4, the ground
work of the preceding section is combined into the development of an encoding
procedure that provides an encoding of the proposed plan transformation by the
means of a reachability problem on timed automata. The encoded problem can
then be solved via existing model checking tools, which can output satisfying traces
to answer reachability queries. From those traces, one can synthesize the trans-
formed plans that ensure executability with respect to the encoded constraints, the
synthesis is detailed in Chapter 5. We proceed to evaluate the procedure in light
of challenges inspired by real-world scenarios in the field of logistics in Chapter 6,
before ending with concluding remarks in Chapter 7.

8

2 Preliminaries
In this section we first introduce classical timed automata as well as some of their
extensions to provide a formalism for modeling of low-level specifics. Then we
explain the basics of model checking and give an overview over available model
checking tools for timed automata. We specifically present the UPPAAL model
checker, which is used to gather empirical results of the plan transformation pro-
posed in this thesis. We proceed by providing a introduction to the logic t-ESG as
formalism to specify the temporal relations between high-level domain knowledge
and low-level platform models. t-ESG is also suited as backend of high-level agent
programs written in GOLOG, as presented to conclude this section. Such an appli-
cation of t-ESG would allow to formulate logical connectives to hardware specifics
on the same semantics that a high-level reasoner may operate on, giving a baseline
to express dependencies based on specific domain predicates.

2.1 Timed Automata

Timed automata were introduced in [4] as a formalism capable of modeling contin-
uous real time systems. In essence, timed automata are finite automata extended
by real-valued variables which model continuous time. These variables are called
clocks and get initialized with 0 when the system starts. They update their time
synchronously and at the same rate. To model time-dependent behavior, transi-
tions are extended by guards, which are constraints based on the clocks. A tran-
sition may only be taken if the current clock values satisfy the associated guard,
such transitions are called enabled. Upon taking an enabled transition some clocks
may get reset to 0, these resets are also referenced as updates.
It is not required to take a transition once it is enabled. Instead, there are different
approaches to model the need of a system to progress. In [4] progression was en-
sured by defining Büchi acceptance conditions, meaning a system run is only valid
if it visits certain states infinitely often (thus leaving them infinitely often as well).
Henzinger et al. introduced a different approach called timed safety automata in
[41], which instead allowed to formulate invariant conditions on states that have
to be met in order to visit or stay in said state.

2.1.1 Syntax

The notation in the remaining sections is based on timed safety automata and
adapted from [15], because this thesis aims to utilize timed automata to model
low-level specifics that should ensure the executability of high-level actions, which

9 2.1 Timed Automata

is typically determined by locally satisfying some preconditions that in term should
ensure a successful execution at that given time. The local view on progress offered
through timed safety automata seem to go along naturally with the local scope that
actions typically have within plans: They are concerned with the preconditions
upon execution, everything prior to the execution start and after effects the effects
are applied are no concern for an action, hence we side with this formalism.
Definition 2.1.1 ([15]). A timed automaton can be formally defined as a quadru-
ple A = (L, l0, E, I) over a finite set of clocks C and a finite alphabet Σ, where

• L is a finite set of locations (also called states)
• l0 ∈ L is a starting location
• E ⊆ L× Φ(C)× Σ× 2C × L is the set of transitions.

Φ(C) denotes the set of clock constraints δ (also called guards), which can
be defined inductively via

δ ::= x op c | c op x | ¬δ | δ ∧ δ
where x ∈ C is a clock, op ∈ {≤,≥} and c ∈ Q is a constant.

Instead of (li, g, a, r, lj) ∈ E we write li
g,a,r−−→ lj ∈ E and call r the set of

resets or updates.
• I : L→ Φ(C) describes for each location the associated invariant.

An exemplary timed automaton modeling a perception unit as described earlier is
shown in Figure 2.1.

power-off

warm-up
cw < 4

running
cr <= 30

true
turn-on
{cw}

cw > 2

no-op

{cr}

cr < 30
shut-off

{cr, cw}

cr = 30
no-op
{cr, cw}

Figure 2.1: TA to model the perception unit, it takes 2-4 time units to warm up and
can run up to 30 time unit at which point it automatically turns itself
off, it uses two clocks cw and cr to count the time since the perception
last started to warm up or to run, respectively.

For the remainder of this thesis, we consider timed automata with the following
restrictions:

• Constants in clock constraints are from the domain N instead of Q.
Since it is easy to scale all clock constraints such that constants from Q are
shifted to a value in N, this basically equates to changing the unit of time
measurement, without affecting the timed automaton model.

2 Preliminaries 10

• Clock constants do not contain disjunctions, hence they also do not contain
negations of conjunctions.
Each clock constraint γ containing disjunctions may be transformed into
disjunctive normal form and in case γ appears as guard of a transition, said
transition can be replaced by multiple copies, each having a conjunctive
clause of γ as guard. If γ describes a location invariant, then said state may
be split into multiple ones along the conjunctive clauses if γ. Therefore, the
expressive power of the formalism is not restricted by this assumption.

• Clock Constraints may contain difference constraints.
A difference constraint, also called diagonal constraint has the form x−y op c,
where x, y ∈ C are clocks, op ∈ {<,>,≤,≥,=} and c ∈ Q is a constant. This
extension of the classical formalism does not impact the expressive power of
timed automata, as shown in [22].

2.1.2 Semantics

Clock assignments are used to express the current value of each clock. Formally
a clock assignment is a function ν : C → R that assigns time values (from the
domain R) to each clock. In the following we introduce notations that allow to
easily express changes to clock assignments: Given t ∈ R, let ν + t denote the
clock assignment that maps any clock x ∈ C to ν(x) + t, similarly ν · t is given by
X 7→ t · ν(x) and given U ⊂ C we write [U 7→ t]ν to describe a clock assignment
which agrees on all clocks except the ones in U with ν and maps all clocks in U
to the value t.
The semantics of a timed automaton A can be expressed by a transition system
T(A) = (VT, ET). VT is given by pairs 〈l, ν〉 ∈ VT where l ∈ L is a location and
ν is a clock assignment. Since clocks are real-valued, T(A) has infinitely many
states. To define ET we first note that e = li

g,a,r−−→ lj ∈ E describes the transition
from location li to lj, which can be taken if the clocks satisfy the guards g. If the
transition is taken then all clocks in r update their values to 0. At any time a
system may either wait in its current location or take a transition from A. When
defining ET we therefore distinguish between two types of transitions in T(A),
delay transitions and action transitions:

1. 〈l, ν〉 d−→ 〈l, ν + d〉, if ν + d satisfies I(l) for any non-negative real d ∈ R+

2. 〈l, ν〉 a−→ 〈l′, ν ′〉, if l g,a,r−−→ l′ ∈ E, ν satisfies g, ν ′ = [r 7→ 0]ν and ν ′ satisfies
I(l′)

Figure 2.2 shows part of the transition system of the automaton in Figure 2.1.
Beginning from the state power-off and with both clocks having the value 0,
transitions from power-off to warm-up are shown. Action transitions are drawn
vertically, delay transitions are shown as horizontal arcs.

Executions of processes modeled through timed automata can be expressed via

11 2.1 Timed Automata

. . .[p, 0, 0] [p, 1, 1] [p, 2, 2] [p, 3, 3] [p, 4, 4] [p, 5, 5]

[w, 0, 0] [w, 1, 1] [w, 2, 2] [w, 3, 3]

[w, 0, 1] [w, 1, 2] [w, 2, 3] [w, 3, 4]

[w, 0, 2] [w, 1, 3] [w, 2, 4] [w, 3, 5]

Figure 2.2: A part of the transition system of the automaton in Figure 2.1. Only
integer steps in clocks shown, State [x, y, z] represents state x of the
TA with clock assignment cw = y, cr = z, state names are shortened
to first letter.

timed traces. A timed trace is a (possibly infinite) sequence of timed actions
〈ai, ti〉 with ti ≤ ti+1 for all i ≥ 1. A timed action is a pair 〈a, t〉 ∈ Σ × R and
denotes that a is taken after t time steps since A started. A run of A over a
timed trace ξ is a sequence of transitions on T(A) that induces ξ. The timed
language L(A) of A is the set of all timed traces ξ for which there exists a run of
A over ξ. One has to be aware that the general notion of timed traces allow for
Zeno traces, meaning traces that are infinite and time converging, which would
require to execute infinitely many actions in finite time. For practical applications
it therefore make sense to only consider finite and infinite non-Zeno traces.

2.1.3 Region Graphs

Amajor reason for the relevance of timed automata as model for real time processes
stems from the observation that T(A) can represented using finite models. This is
due to the low resolution of constants from domain Q or N compared to the domain
R of clock values. The concept behind this is, that while time flows continuously
and therefore currently elapsed time may only be expressible by irregular numbers,
the means to capture the current time are less precise, e.g., stopping the time after
exactly π seconds is impossible. To evaluate comparisons within clock constraints
the current time has to be captured, hence the value to compare against suffices
to have low resolution. Alur and Dill utilized this to define the notion of region
graphs [4].

Definition 2.1.2 (adapted from [15]). Let A = (L, l0, E, I) be a timed automaton
with clocks C. Let k : C → N be a function called clock ceiling. For r ∈ R let brc
denote its integral part and {d} denote its fractional part. The equivalence relation
∼k is defined over the set of all clock assignments. µ ∼k ν iff all the following
holds:

• For all x ∈ C: either bµ(x)c = bν(x)c, or µ(x) > k(x) and ν(x) > k(x).
• For all x, y ∈ C with µ(x) ≤ k(x) and ν(x) ≤ k(x): ({µ(x)} < {µ(y)} iff

({ν(x)} < {ν(y)}.

2 Preliminaries 12

• For all x ∈ C with µ(x) ≤ k(x): ({µ(x)} = 0 iff {ν(x)} = 0.

The region graph Rk(A) can be defined based on T(A) using the equivalence classes
[·] given through ∼k via:

1. 〈l, [ν]〉 d−→ 〈l, [µ]〉, if 〈l, ν〉 d−→ 〈l, µ〉
2. 〈l, [ν]〉 a−→ 〈l′, [µ]〉, if 〈l, ν〉 a−→ 〈l′, µ〉

The regions essentially utilize the fact that, despite clocks having values from the
domain R, the values to compare them against are natural numbers. Therefore,
in between two natural numbers the concrete values of clocks does not matter,
instead only the relative ordering of clock values is relevant to the evaluation of
clock constraints. Locations s ∈ VT that are grouped to a region satisfy the same
clock constraints. Beyond a certain clock ceiling, that can be determined by finding
the maximal constants that a clock is compared against, the further progress of
a clock value is not relevant anymore. Instead, there is again only a distinction
based on the relative orderings of clock values.

4

30

(a) All regions, ceilings are cr = 30 and cw = 4. (b) 33 regions from a 2 ×
2 grid with both clocks
below their ceilings.

Figure 2.3: Visualization of regions for the automaton in Figure 2.1

Figure 2.3 visualizes the regions of the automaton of Figure 2.1 with clock ceilings
k(cw) = 4 and k(cr) = 30. Even tho the timed automaton only has two clocks
there are 860 possible regions for each location, resulting in a representation that,
despite being finite, is still too big to handle in practical applications.

2.1.4 Zone Graphs

A smaller partitioning of T(A) can be obtained by considering zones [33] instead
of regions. Zones are representations of solution sets of clock constraints. They
can be efficiently stored in difference bound matrices (DBMs). DBMs are square
matrices that have bounds b ∈ Z×{<,≤}∪〈∞, <〉 as values. Entry [i, j] = 〈c, op〉
encodes a constraint xi − xj op c. The following observation provides the basis of
DBMs in context of timed automata.
Observation 2.1.3 (see [33]). Solution sets of clock constraints can be represented
by bounds on individual clocks together with bounds on differences between pairs of
clocks.

13 2.1 Timed Automata

power-off0
〈cw = cr = 0〉

power-off1
〈cw = cr〉

warm-up0
〈cw = cr = 0 ∧ cw < 4〉

warm-up1
〈cw < cr ∧ cw < 4〉

running0
〈cw ≤ 30 ∧ cw > 2

∧cw − cr < 4 ∧ cr − cw < −2〉

running1
〈cw ≤ 30 ∧ cw > 2
∧cr − cw < −2〉

Figure 2.4: Zone graph for the automaton of Figure 2.1.

Note how bounds on individual clocks can be represented as difference bounds
as well, when utilizing a virtual clock cl0 that has a constant value of 0: For
c ∈ C, x, y ∈ N the Bounds x op1 c op2 y may be expressed as

c− cl0 op2 y ∧ cl0 − c op1 − x

Therefore, a zone may be represented via a (|C|+1)×(|C|+1) DBM. In the following
we refer to zones as sets of clock constraints as well as the set of clock assignment
satisfying the constraints interchangeably. Let D be a zone and r be a set of clocks,
then one can define the delay of a zone via D↑ := {ν + d | ν ∈ D, d ∈ R+} and the
effect of clock resets as r(D) := {[r → 0]ν | ν ∈ D} and therefore define symbolic
semantics via:

• 〈l, D〉 〈l, D↑ ∧ I(l)〉

• 〈l, D〉 〈l, r(D ∧ g) ∧ I(l′)〉, if l g,a,r−−→ l′.

Starting from an initial zone where all clocks are exactly 0 the resulting transition
system replicates the semantics of T(A), however it is not necessarily finite. Indeed
it is easy to find examples, where this is not the case, e.g., shown in [15]. The
missing piece is that the maximal constants can be utilized to ensure a finite
system. Similar to the clock ceiling function for region equivalence one can define
functions to unify different zones that only differ in clock values above the limits.
Given such a ceiling function norm for zones a finite zone graph G(A) is defined
via:

• 〈l, D〉 〈l, norm(D↑) ∧ I(l)〉

• 〈l, D〉 〈l, norm(r(D ∧ g) ∧ I(l′))〉, if l g,a,r−−→ l′.

In case of diagonal-free timed automata (timed automata without difference con-
straints), one may simply define such a ceiling via: normk(D) := {u | u ∼k v, v ∈
D}. In the general case this is not possible, but a modified ceiling function can be
constructed as shown in [14]. Figure 2.4 shows the zone graph of the automaton
from Figure 2.1 having only six states.

In order to get actual information about a timed automaton A when basing al-
gorithms on the corresponding zone automaton G(A), the following concepts are
essential:

2 Preliminaries 14

Definition 2.1.4. A symbolic trace for a timed automaton A = (L, l0, E, I) is a
sequence

〈l1, D1〉
g1,a1,r1 〈l2, D2〉

g2,a2,r2 . . .
gn,a2,rn 〈ln, Dn〉,

such that ∅ ⊂ Dn ⊆ I(ln) and for all i < n

• Di 6= ∅,
• Di ⊆ I(li),
• Di ∧ gi 6= ∅,
• there exists li

gi,ai,ri−−−−→ li+1 ∈ E and
• ri(Di ∧ gi) ∩ I(li+1) ⊆ Di+1.

The above definition essentially requires a symbolic trace to always contain at least
one timed trace of A. The following two properties, as proposed in [68], aim to
relate symbolic traces even closer to timed traces.
Definition 2.1.5. A symbolic trace 〈l1, D1〉

g1,a1,r1 〈l2, D2〉
g2,a2,r2 . . .

gn,an,rn 〈ln, Dn〉,
is called post-stable or forward-stable, if for all v ∈ Di, 1 < i ≤ n, there exist
u ∈ Di−1 and d ∈ R≥0, such that u+ d |= gi−1 and [ri−1 7→ 0](u+ d) |= I(li).

Definition 2.1.6. A symbolic trace 〈l1, D1〉
g1,a1,r1 〈l2, D2〉

g2,a2,r2 . . .
gn,a2,rn 〈ln, Dn〉,

is called pre-stable or backward-stable, if for all u ∈ Di, i < n, there exist d ∈ R≥0,
such that u+ d |= gi, u+ d ∈ Di and [ri 7→ 0](u+ d) ∈ Di+1.

A post-stable symbolic trace therefore guarantees that any concrete state in a zone
can be reached from one state contained in the predecessor zone, while a pre-stable
symbolic trace guarantees that from any concrete state in a zone one may reach a
state in the successor zone. The extraction of a concrete trace from a given pre-
and post-stable trace is presented in Section 5.

2.1.5 Difference Bound Matrices

The set of bounds together with:

• n := 〈∞, <〉 (neutral element of ∩)
• e := 〈0,≤〉 (neutral element of +)
• 〈x1, op1〉 + 〈x2, op2〉 := 〈x1 + x2,min{op1, op2}〉, with < being smaller than
≤ and ∞+ x = x+∞ :=∞

• 〈x1, op1〉 ∩ 〈x2, op2〉 :=
〈x1, op1〉, if 〈x1, op1〉 ≤ 〈x2, op2〉
〈x2, op2〉, else

, with 〈x1, op1〉 <

〈x2, op2〉 if x1 < x2 and op1 < op2.

form a regular algebra [8, 33], hence DBMs, being square matrices over bounds,
form a regular algebra as well. Due to the semantics of DBMs we can immediatly
observe the following:

15 2.1 Timed Automata

1. For all bounds b in the row corresponding to cl0 it holds: b ≤ 〈0,≤〉, because
clock values are non-negative.

2. The diagonal entries of all non-empty DBMs are 〈0,≤〉.

Figure Figure 2.5a shows a DBM constructed through the constraints of state
running0 of Figure 2.4. Since no bound was specified for cr − cl0, the trivial
bound 〈∞, <〉 is asserted.

cl0 cw cr

cl0 〈0,≤〉 〈−2, <〉 〈0,≤〉
cw 〈30,≤〉 〈0,≤〉 〈4, <〉
cr 〈∞, <〉 〈−2, <〉 〈0,≤〉

(a) Constraints from symbolic state
running0 of Figure 2.4 as DBM

cl0 cw cr

cl0 〈0,≤〉 〈−2, <〉 〈0,≤〉
cw 〈30,≤〉 〈0,≤〉 〈4, <〉
cr 〈28, <〉 〈−2, <〉 〈0,≤〉

(b) Closed form of 2.5a.

Figure 2.5: DBM representations of symbolic state running0 of Figure 2.4.

However, from

cr − cw < −2⇔ cr < −2 + cw
cw≤30
⇒ cr < 28

one can derive that cr − cl0 < 28. This shows that a solution set of a clock
constraint has no unique DBM representation. A canonical representative can be
derived by tightening all bounds as much as possible without reducing the solution
set:

Definition 2.1.7. Let D be a DBM. Then cf(D) is called the closed form of D,
where

cf(D) :=

D∗ = ⋂

i≥0
Di, if D 6= ∅

∅ else

Note that computing the closure cf(D) = D∗ of a non-empty DBM D equates
to applying the Floyd-Warshall algorithm [35] on the through D induced graph.
Testing a DBM D for emptiness can be done by to checking for any self loop with
a bound smaller than 〈0,≤〉 after applying the Floyd-Warshall algorithm to D.
This is similar to the check for negative cycles after applying the algorithm on a
weighted graph, but additionally handles the case of 〈0, <〉 in a self loop, which
also results in D being empty. A graph representation of the DBM in Figure 2.5a
is shown in Figure 2.6. The tightening of the bound cr − cl0 <∞ can be derived
by taking the path from cr over cw to cl0.

2 Preliminaries 16

cl0 cw

cr

〈0,≤〉 〈0,≤〉

〈0,≤〉

〈30,≤〉

〈4, <〉〈−2, <〉

〈0,≤〉

〈−2, <〉

Figure 2.6: Induced Graph of DBM from Figure 2.5a. Trivial Bounds are not
shown.

2.1.6 Complexity Results

A first flattening result regarding the complexity that timed automata introduce
was found when the language inclusion decision problem was considered. It is the
task to decide given two automata A and B whether L(A) ⊆ L(B). The initial
work in [4] classified this problem as undecidable. It becomes decidable (PSPACE-
complete), also due to [4], in case of deterministic timed automata where at each
state of T(A) for each possible action a ∈ Σ at most one transition can be taken.
This also implies that non-deterministic timed automata are strictly more expres-
sive than deterministic ones.
A major reason of why timed automata became such a thoroughly studied formal-
ism is due to the complexity of the reachability problem. Said problem is con-
cerned with deciding given two location and clock assignment pairs 〈l, ν〉, 〈l′, ν ′〉
whether there is a path in T(A) from 〈l, ν〉 to 〈l′, ν ′〉. A more general yet in terms
of complexity equivalent definition is to give a location l′ together with a clock
constraint ϕ as destination. Then the task is to decide if any 〈l′, ν ′〉 ∈ T(A) is
reachable such that ν ′ satisfies ϕ. Alur and Dill proved that reachability analysis
is PSPACE-complete, hence decidable [4]. The proof evolves around the size of
region graphs.

State of the art techniques rather utilize smaller symbolic representations, such
as DBMs. While reachability analysis may seem unimpressive at first glance, it
can be used to check whether failure states can be avoided or safe states are never
exited. This technique thus could be used to verify important system properties,
such as invariants or safety properties.

2.1.7 Extensions

To further improve the modeling power of timed automata several extensions have
been studied. It might become appealing to also allow additive constraints of the
form x + y op c along with difference constraints. However in [21] it was shown
that those, together with difference constraints, makes the reachability problem
undecidable for automata with at least four clocks.

Another way of extending the formalism is to add additional freedom when updat-

17 2.2 Model Checking

ing clocks. This has been studied in [19] with the result that the combination of
difference constraints and more expressive updates leads to undecidability quickly.
Updates of the form x := y (syncing a clock with another clock) or x :< c (updat-
ing a clock to a value that is not specified but less than a constant c ∈ Q+) can
be handled in both cases, the full table of the results in [19] is depicted below in
Table 3.1.

Additional updates Adf A
∅ PSPACE PSPACE

{x := c | x ∈ C} ∪ {x := y | x, y ∈ C} PSPACE PSPACE
{x :< c | x ∈ C, c ∈ Q+} PSPACE PSPACE
{x := x+ 1 | x ∈ C} PSPACE Undecidable
{x :> c | x ∈ C, c ∈ Q+} PSPACE Undecidable
{x :> y | x, y ∈ C} PSPACE Undecidable
{x :< y | x, y ∈ C} PSPACE Undecidable

{x : op y + c | x, y ∈ C, c ∈ Q+, PSPACE Undecidable
op ∈ {<,≤, >,≥,=,≤}}
{x := x− 1 | x ∈ C} Undecidable Undecidable

Table 2.1: Impacts on the decidability when strengthening the update capabilities
of clocks in timed automata.

Timed automata can also be used to solve optimization problems: In [60] it was
shown that reachability tasks can be solved while also returning a minimum time
path to the destination. To allow optimizing towards more general objectives [12]
introduced linearly prized timed automata (PTAs) along with a min-cost reach-
ability algorithm. They allow to define a price function cost on locations and
transitions. The total price of a run ρ is derived by adding for each visited loca-
tion l the duration of visits l multiplied by cost(l) and for each transition e cost(e)
times the number of times e got used in ρ.

Uncontrollable actions of timed system can be interpreted as a game versus the
environment and therefore timed game automata (TGAs) [7] have been introduced.
They extend timed automata by dividing the transitions into uncontrollable and
controllable edges. Time optimal strategies can be synthesized as shown in [6].
PTAs and TGAs can also be combined to form priced timed game automata (PT-
GAs) and used for optimization shown in [18].

2.2 Model Checking

Baier et al. [9] describe the principles of model checking as:

‘Model checking is an automated technique that, given a finite-state model of a
system and a formal property, systematically checks whether this property holds
for (a given state in) that model.‘

2 Preliminaries 18

So model checking tasks can be divided into three steps:

1. Model the domain of interestM.
2. Specify a formal property via a logical formula ϕ.
3. Verify or refute the property by checking whetherM satisfies ϕ.

Typically if a timed automaton A = (L, l0, E, I) is used to model the domain,
then a labeling function χ : 2AP → L is introduced along with A where AP denotes
a finite set of atomic propositions. The labels in AP are used to describe system
properties. This is done to abstract away from the concrete structure of the model
and allow to reference properties concerning multiple states. In our application
this is not necessary and so we can define AP such that it consists of unique ids for
each location.

2.2.1 TCTL

In order to specify formal properties, one has to define a language capable of ex-
pressing them. In our case timed automata are chosen as domain model, which are
suited to represent systems with continuous time. Therefore temporal extensions of
computation tree logic (CTL) [28] were proposed to express essential real-time sys-
tem properties. The basis in the form of temporal computation tree logic (TCTL)
was given in [2] and the property specification languages of the state-of-the-art
model checkers all adapt this formalism to the respective tool features. So in the
following we give a definition of TCTL adapted from [9].

Syntax

Given A = (L, l0, E, I) with clocks C with atomic proposition AP and labeling
function χ a TCTL state formula can be described as

Ψ ::= true | a | g | ∃ϕ | ∀ϕ

where a ∈ AP, g ∈ Φ(C) and ϕ is a path formula defined by ϕ ::= ΨUIΨ given a
convex interval I ⊆ R≥0 with integer bounds (including ∞ as upper bound).

Semantics

Let Pathdiv(s) be the set of all timed traces in T(A) starting in s = 〈l, u〉 that are
either finite or non-Zeno. Then the satisfaction relation of TCTL state formulas
can be given by

• s |= a iff a ∈ χ(l)
• s |= g iff u satisfies g
• s |= Ψ1 ∧Ψ2 iff s |= Ψ1 and s |= Ψ2

19 2.3 Model Checking Tools

• s |= ¬Ψ iff not s |= Ψ
• s |= ∃ϕ iff π |= ϕ for some π ∈ Pathdiv(s)
• s |= ∀ϕ iff π |= ϕ for all π ∈ Pathdiv(s)

The satisfaction relation for TCTL path formulas can be defined as:
π = s0 → s1 → . . . = 〈α0, t0〉, 〈α1, t1〉, . . . |= Ψ1UIΨ2, iff ∃i ≥ 0.si |= Ψ2

and ∀j < i.sj |= Ψ1 ∨Ψ2

and ti − t0 ∈ I

For convenience the usual operators from modal logic can be defined as (> denotes
a universally true statement):

• ♦IΨ := >UIΨ (there exists sj where sj |= Ψ holds and sj is reached within
I)

• ∃�IΨ := ¬∀♦I¬Ψ (there exists a path where Ψ holds in any state that is
reached within I)

• ∀�IΨ := ¬∃♦I¬Ψ (On all paths Ψ holds in any state that is reached within
I)

Most importantly for us is the fact that we can formulate reachability tasks to a
location l by introducing an atomic propositions id(l) that is uniquely assigned
to l via χ. Then the property ∃♦[0,∞)id(l) allows to check whether l is reachable.
Modern tools offer to return diagnostic traces which in this case yield a path
to l if it exists. To put model checking in context of this thesis, the goal to
transform high-level plan according to platform specific requirements is achieved
by encoding the problem of finding an executable plan as a reachability problem on
timed automata, such that a feasible plan can be obtained from a solution trace.

2.3 Model Checking Tools

We base our work on the model checking tool UPPAAL [11], which is jointly de-
veloped by Uppsala University and Aalborg University and was first released in
1995.

There are various alternative tools available to solve reachability tasks on timed
automata, such as the fully symbolic solver RED [69], the well-known command line
tool KRONOS [20], and also solvers for formalisms that subsume timed automata, e.g.
HYTECH [42] and HYPRO [67] which handle hybrid systems or FSMTMC for modeling
finite state machines with time [59], to only name a few. Since the input and
output formats, as well as the modelling capabilities differ across the tools, it is
hard to simply compare them performance-wise in order to justify choosing the
use of one tool over the others. Although, effort has been made, e.g. in [23], the
general lack of standardized benchmark domains makes it impossible to obtain

2 Preliminaries 20

competitive rankings, as of yet. The vast differences also imply that it becomes a
major task to integrate a single tool for the scope of this thesis, which is why we
decided against an attempt to compare different model checkers for our use-case.
Instead, the decision in favor of UPPAAL was mainly made due to the following
reasons:

• There is detailed documentation available, which tremendously helped to en-
sure that all required features for a model checking based plan transformation
were indeed covered.

• A GUI aallowed to estimate the scalability of our approach early on and was
especially helpful to quickly prototype alternative approaches.

• It is actively developed, with the latest development snapshot release from
2019, as of date.

Notable drawbacks of UPPAAL are, that the source code is not publicly available and
the provided C++ API, in the form of the companion library UTAPLIB, cannot call
the solver directly. Therefore, in order to integrate the functionalities of UPPAAL
into a software stack, one has to either use the JAVA API or invoke calls to a
companion command line tool verifyta directly. Also, UPPAAL models do not
support the notion of action labels on transitions. Since action labels play an
important role for the proposed modeling of platform specifics as timed automata,
this imposes the following restriction on platform models: any two transitions t1, t2
of a platform model automatonAmust differ either in their guards, updates, source
or destination locations. In the unlikely case, where this may become an issue, one
could add a trivial constraint to the guard to make t1 and t2 distinguishable again.
This effectively allows us to model timed automata with action labels, handing
them without labels to the solver and afterwards retrieve them with a lookup from
the original model.

2.3.1 UPPAAL

UPPAAL is written in C++ and comes along with a Java-based GUI. UPPAAL models
are based on timed automata with difference constraints saved as .xml files. How-
ever, the classical formalism is extended in various ways such as bounded discrete
variables, arrays and parameterized automata. Clocks and variables can be defined
in either a local (instantiated automaton only) or global (ranging over all automata
forming a system) scope. Communication in a system of parallel operating timed
automata is realized via channels in a master-slave like relation: A transition can
be annotated via a channel identifier c followed by ! or ? to denote an active or
passive transition respectively. There are three types of channels: binary, urgent
and broadcast which behave as follows given a system of automata A1, . . . ,An in
the current location (l1, . . . , ln).

• Let c be a binary channel. If for some li, i ∈ [1, n] there is a transition ei
annotated with c! and there exists j 6= i s.t. in lj is a transition ej annotated

21 2.3 Model Checking Tools

with c? and both guards on ei and ej are satisfied as well as the invariants of
the target states then the system can take both transitions synchronously.

• Urgent channels behave like binary channels but require the system to take
the synchronized edges as soon as possible, therefore guards are not allowed
on them.

• Let c be a broadcast channel. If for some li, i ∈ [1, n] there is a transition
ei annotated with c! which guard is satisfied then the system can take this
transition along with all transitions ej annotated with c? from states lj, j 6= i
synchronously (if some lj has multiple outgoing transitions labeled with c?
then only one is used). Transitions annotated with the passive end of a
broadcast channel are not allowed to have guards. Also note that this is a
non-blocking broadcast in the sense that ei does not need any receiver to emit
the broadcast, however all enabled edges that can receive it will synchronize.
This may lead to undefined states if the target locations of the receiving
transitions have unsatisfied invariants.

As requirement specification language UPPAAL supports a subset of TCTL that
does not allow nested quantifications over path formulas. However, they introduce
the operator to check for bounded liveness properties of the form ϕ1 ϕ2,
meaning whenever ϕ1 holds then eventually ϕ2 holds as well, where ϕ1 and ϕ2 are
atomic state formulas.
Based on the success of UPPAAL several extensions have been developed to further
increase the modeling power, such as UPPAAL-TIGA (Timed Interfaces Game Au-
tomata) for TGAs [25] and UPPAAL-CORA (Cost Optimal Reachability Analysis)
[13] for PTAs.

2.3.2 verifyta

UPPAAL comes along together with the command line tool verifyta to allow GUI-
less invokations of the solver. In the following we present the basic workflow with
verifyta: verifyta requires an automata system description as .xml file together
with a query from the supported query language, stored in a file with ending .q. It
then returns the result of the query and optionally an symbolic trace (a sequence of
zones together with the connecting automata transitions) satisfying/refuting the
query.

We proceed by listing the command line options that are relevant for the scope of
this thesis.

• -t 〈0|1|2〉: Generate a trace on stderr. Options 0, 1 and 2 specify the type of
trace, any trace, the shortest trace (with respect to the number of transitions
taken) or the fastest trace (with respect to total time ellapsed), respectively.
Using the option -t 2 we have the basis to extract the time-optimal exe-
cutable plan as a solution to the proposed plan transformation.

2 Preliminaries 22

• -Y: output a pre- and post-stable trace.
The possibility to obtain a e pre- and post-stable trace allows to compute a
timed trace easily, as shown in Section 5.

• -f 〈filename〉: Write the trace to a file instead of stderr.

The trace output of verifyta is written in a format suitable for the UPPAAL
GUI, but unusuable elsewhere, because internally verifyta and UPPAAL utilize an
intermediate format to store timed automata efficiently and output traces are only
containing references to the data of that internal format. However, the UTAPLIB
comes along with a tool called tracer, which can produce a human readable
trace given the output trace file of verifyta and the intermediate format of the
automata system in use. The latter can also be computed by verifyta by setting
the COMPILE_ONLY=1 environment variable. The full workflow to obtain a symbolic
trace is depicted in Figure 2.7.

.q

.xml

verifyta

.if

.xtr

tracer
trace

1COMPILE_ONLY=1

2

3

Figure 2.7: Steps to obtain a human readable trace using verifyta and tracer.

2.4 Metric Temporal Constraints in t-ESG

In order to define the constraints that connect modeled platform components with
abstract plan actions, we propose to use a formalism that is able to fulfill the
following two requirements:

(I) Capability to fully model the high-level domain.
This enables the formulation of constraints based on the same semantics
that the high-level reasoner may operate on. Therefore, a baseline is given
to express more general dependencies between platform and domain spec-
ifications, rather than just basing platform model interactions on abstract
plans only.

(II) Similar expressive power regarding temporal relations between high-level
events and platform operations as the timed automata formalism provides.
The precise temporal modeling of possible platform model operations can
only be effectively utilized if the constraints to describe the invocations of
said operations allow for a comparable fine-grained temporal control.

23 2.4 Metric Temporal Constraints in t-ESG

To address the first point, some variant of the situation calculus [58, 65], a first-
order logic for reasoning about actions, may provide a good basis. A domain is
essentially represented by situations and actions that modify them, where situa-
tions are snapshots of the world during some execution, containing the knowledge
of the finite history of executed actions so far. A domain is defined via a basic
action theory, a set of logical sentences that can be categorized via the following
partitioning:

Σ ∪ Σ0 ∪ Σpre ∪ Σpost ∪ Σuna,

where

• Σ are axioms to attach semantics to sitations,
• Σ0 describes the initial situation,
• Σpre formalizes the preconditions of actions,
• Σpost provides effects of actions in the form of successor state axioms, sen-

tences that state the exact changes acion executions entail,
• Σuna contains axioms to ensure unique action names.

Several variants of the situation calculus were proposed to enrich the formalism,
e.g. the modal variant ES [53] that avoids the explicit notion of situations and
instead pushes axioms about situations and standard names within the language
semantics. Claßen and Lakemeyer [29] extended ES by a notion of time to the logic
ESG, which Hofmann and Lakemeyer [45] extended further by metric temporal time
and quantitative temporal operators similar to Metric Temporal Logic (MTL)[50].

We base our work on the ideas of [45] and use t-ESG as language for specifying
connective constraints between platform specifics and abstract plans. The remain-
der of this section summarizes the basic syntax and semantics of t-ESG, adapted
from [45]. For more details see [53, 29, 45].

2.4.1 Syntax of t-ESG

t-ESG is a sorted logic with sorts object, action, and number and a countably
infinite set of standard names for each sort, that can be seen as unique identifiers
and are isomorphic with the domain of the respective sort.

Definition 2.4.1. The symbols of t-ESG are:

• Object variables x1, x2, . . . , y1, . . . and object standard names NO = {o1, o2, . . .}.
• Action variables a1, a2, . . . and action standard names NA = {p1, p2, . . .}.
• Number variables t1, t2, . . . and number standard names, here we assume
NN = N in accordance to the allowed constants in clock constraints of timed
automata.

• Fluent predicates of arity k: Fk = {fk1 , fk2 , . . .}, with distinguished predicates
<∈ F2 and Poss ∈ F1.

2 Preliminaries 24

• Rigid functions of arity k: Gk = {gk1 , gk2 , . . .}, with distinguished functions
+, · ∈ G2.

• Fluent object functions of arity k: Hk = {hk1, hk2, . . .}.
• Fluent number functions of arity k: Ik = {ik1, ik2, . . .}, with distinguished

functions time ∈ I1 and now ∈ I0.
• open, half-open and closed intervals with number constants as endpoints and

a possible missing upper bound, denoted via ∞).
• Connectives and other symbols: =,∧,¬,∀,XI ,UI ,VI ,SI ,�, [·], J·K

For a given interval I and constant c ∈ NN we write c + I to denote the interval
I ′ having the bounds of I increased by c, e.g. 2 + (1, 3] = (3, 5].

Definition 2.4.2. The set of t-ESG terms is the least set, such that:

• every variable and every standard name is a term of the same sort
• given t1, . . . , tk and a k-ary function symbol f , f(t1, . . . , tk) forms a term of

the same sort as f .

A term is called primitive, if it does not contain any variable symbol, we denote
the sets of primitive terms of sort object, action and number by PO,PA, and PN ,
respectively.

Definition 2.4.3. A t-ESG program is given by the following grammar:

δ ::= t | α? | δ1; δ2 | δ1 | δ2 | πx.δ | δ1 || δ2 | δ∗

where t is an action term and α is a static situation formula.

Similarly to TCTL, where state and path formulas are defined, t-ESG distinguishes
between situation and trace formulas.

Definition 2.4.4. The t-ESG situation formulas are the least set, such that:

• If t1, . . . , tk are terms and P is a k-ary predicate symbol, then P (t1, . . . , tk)
is a situation formula, if t1, . . . , tk are standard names, then P (t1, . . . , tk) is
called primitive.

• If t1, t2 are terms, then t1 = t2 is a situation formula.
• If α, β are situation formulas, x is a variable, P a predicate symbol, δ is a

program and φ is a trace formula, then α ∧ β,¬α, ∀x.α,�α, [δ]φ and JδKφ
are situation formulas.

A situation formula is static, if it does not contain any of the following symbols:
�, [·], J·K. A situation formula is fluent, if it is static and does not contain the
predicate Poss. The set of primitive situation formulas is denoted by PF .

Definition 2.4.5. The t-ESG trace formulas are the least set, such that:

25 2.4 Metric Temporal Constraints in t-ESG

• If α is a situation formula, then it is also a trace formula.
• If φ, ψ are trace formulas, x is a variable, and I is an interval, then then
φ ∧ ψ,¬φ,∀x.φ,XIφ,VIφ, φUIψ and φSIψ are trace formulas.

We also use the following short-hand notations: FIφ := >UIφ (future), GIφ :=
¬FI¬φ (globally), PIφ := >SIφ (past), HIφ := ¬PI¬φ (historically) and if I =
[0,∞), it may be omitted.

2.4.2 Semantics of t-ESG

The semantics of t-ESG formulas are depending on worlds and timed traces. Anal-
ogously to timed traces in the context of timed automata, in t-ESG a timed trace
is a sequence of tuples consisting of actions and time points. Timed traces are
required to be non-Zeno, the set of finite traces is denoted by Z.

Worlds assign truth values to all predicates for any given finite timed trace (de-
noting the history of executed actions).

Definition 2.4.6. A world w is defined by mappings

1. PF ×Z → {0, 1}
2. PO ×Z → NO
3. PN ×Z → NN

For a given world w together with an execution history z ∈ Z the semantics of
terms, programs and formulas are determined as follows.

Definition 2.4.7. Let w be a world and z = 〈(a1, t1) · (a2, t2) · . . . · · · (an, tn)〉 ∈ Z
be a finite trace. The denotation |t|zw of a term t is defined via:

• if t ∈ N0 ∪NA ∪NN , then |t|zw := t,
• if t = now, then |t|zw := time(z) with time(z) := tn,
• if t = time(a(t1, . . . , tk)), then |t|zw := max{ta | 〈a(n1, . . . , nk), ta〉 ∈ z, ni =
|ti|zw} ∪ {0},

• if t = f(t1, . . . , tk), then |t|zw := w[f(|t1|zw, . . . , |tk|zw), z].

Note the designated semantics of now and time, where the former always refers to
the current time in the world and the latter holds the time of any actions’ last exe-
cution. Since worlds determine the values of functions, objects and numbers based
on a history that contains time points, it is possible to model complex temporal
relations, such as fluent predicates that are not only determined by the sequence
of executed actions from an initial world state, but also depend of the timings of
the executed actions. As an example, given a predicate Holding(~x) and an action
pick, then w[Holding(~x), 〈(pick, 10)〉] could be 1 while w[Holding(~x), 〈(pick, 20)〉]

2 Preliminaries 26

evaluates to 0 in the same world, e.g., because the object to pick up is moving on
a conveyor belt causing it to be pick-able only in certain time frames.

Semantics of programs are defined via transitions between configurations, the se-
mantics are sketched informally as follows:

• α? denotes test,
• δ1; δ2 a sequence,
• δ1 | δ2 non-deterministic branching,
• πx.δ non-deterministic choice of arguments,
• δ1 || δ2 interleaved concurrency
• and δ∗ denotes non-deterministic iteration.

The formal definitions are specified in [45]. Relevant for the scope of this paper
is just, that programs induce a set of timed traces ||δ||zw consisting of all finite
successful executions of δ in w when executed after history z, as well as all infinite
traces that lead a program to never terminate. This is sufficient to formally define
the semantics of formulas.

Definition 2.4.8. Let w be a world and z ∈ Z be a finite trace. The truth of a
situation formula is defined inductively by:

• w, z |= F (t1, . . . , tk), iff w[F (|t1|zw, . . . , |tk|zw)] = 1,
• w, z |= (t1 = t2), iff |t1|zw and |t2|zw are identical,
• w, z |= α ∧ β, iff w, z |= α and w, z |= β,
• w, z |= ¬α, iff w, z 6|= α,
• w, z |= ∀x.α, iff w, z |= αxn for all n of the same sort as x, where αxn refers

to α with all occurrences of x replaced by n,
• w, z |= �α, iff w, z · z′ |= α for all z′ ∈ Z,
• w, z |= [δ]α, iff w, z · z′ |= α for all finite z′ ∈ ||δ||zw,
• w, z |= JδKφ, iff w, z, τ |= φ for all τ ∈ ||δ||zw.

So, intuitively �α denotes that α holds true independent from any future actions
that may be executed, [δ]α means that α holds true after every successful execution
of δ and JδKφ holds true if φ is satisfied during every possible execution of δ.

Definition 2.4.9. Let w be a world, z ∈ Z be a finite trace (the history) and τ a
(possible infinite) trace (the remaining sequence to execute), such that z · τ forms
a trace. The truth of a trace formula is defined by:

• w, z, τ |= α, iff w, z |= α and α is a situation formula,
• w, z, τ |= φ ∧ ψ, iff w, z |= φ and w, z |= ψ,
• w, z, τ |= ¬φ, iff w, z 6|= φ,

27 2.4 Metric Temporal Constraints in t-ESG

• w, z, τ |= ∀x.φ, iff w, z |= φxn for all n of the same sort as x, where φxn refers
to φ with all occurrences of x replaced by n,

• w, z, τ |= XIφ, iff there exists p ∈ PA with τ = p · τ ′, w, z · p, τ ′ |= φ and
time(p) ∈ time(z) + I,

• w, z, τ |= VIφ, iff there exists p ∈ PA with z = z′ · p, w, z′, p · τ ′ |= φ and
time(p) ∈ time(z′) + I,

• w, z, τ |= φUIψ, iff there exists z1 ∈ Z with:
– τ = z1 · τ ′,
– time(z · z1) ∈ time(z) + I,
– w, z · z1, τ

′ |= ψ

– for all z2 6= z1 with z1 = z2 · z′ for some z′ ∈ Z, w, z · z2, z
′ · τ ′ |= φ

• w, z, τ |= φSIψ, iff there exists z1 ∈ Z with:
– z = z1 · z2,
– time(z) ∈ time(z1) + I,
– w, z1, t2 · τ |= ψ

– for all z3 6= 〈〉 with z2 = z3 · z′ for some z′ ∈ Z, w, z · z3, z
′ · τ |= φ

We briefly give the semantics of the trace operators on an intuitive level:

• XIφ holds iff the next state (e.g. the next action in the program) is reached
within a time window of I and in that state φ holds.

• VIφ holds iff in the previous state (e.g. the preceding action in the program)
φ holds and the current state was reached within a time window of I from
that state.

• φUIψ holds iff there is a future state reached within a time window of I and
in that state ψ holds. Additionally on all intermediate state φ must be true
(without this last condition we obtain the semantics of FI). So the t-ESG
semantics of UI correspond to those of TCTL path formulas.

• φSIψ holds iff there is a past state where ψ holds and from which the current
one is reached within a time window of I. Additionally on all intermediate
states φ must be true (without this last condition we obtain the semantics
of PI).

• GIφ holds iff in all future states within I φ holds.
• HIφ holds iff in all past states from which the current one is reachable within
I φ holds.

Similar to classical situation calculus, t-ESG can be used to express basic action
theories. Due to the embedding of standard names and situations (in t-ESG given
in form of worlds and associated traces) in the semantics, the formulation of a basic

2 Preliminaries 28

action theory is significantly easier, a feature inherited from ES. In particular, it
is sufficient to provide a description of the initial world, all preconditions and the
successor state axioms:

Definition 2.4.10. Let F be a set of fluent predicates and Σ be a set of t-ESG
sentences. Σ is called a basic action theory over F (BAT), iff Σ = Σ0∪Σpre∪Σpost,
where Σ only mentions fluents from F and

• Σ0 is any set of fluent sentences,
• Σpre is a set of fluent formulas with free variable a.
• Σpost is a set of sentences containing exactly the following formulas:

– for each f ∈ F : �[a]f(~x) ≡ γf and
– for each f ′ ∈ H ∪ I: �[a]f ′(~x) = v ≡ γf ′,

where γf and γf ′ are fluent formulas and v is a variable.

A single precondition axiom is formed from Σpre via �Poss(a) ∨ Σpre.

For a full BAT specified in t-ESG we refer to [45], in the following we provide
example sentences for each of the three required types of sets. By considering a
robot operating in a room with a goto(s, d) action and fluent predicates At(r, l)
specifying the robots location as well as Occ referring to the currently started
action.

• At(TABLE) ∈ Σ0 may describe that the robot is initially at a table,
• ∃s∃d.a = goto(s, d)∧At(s) ∈ Σpre provides the preconditions of goto, in this

case the only requirement is that the robot has to be at the source location.
• �[a]Occ(a′) ≡ a = a′ ∈ Σpost requires Occ to always point to the currently

started action,
�[a]At(l) ≡ a = goto(s, l) ∨ (At(l) ∧ a 6= goto(l, d)) ∈ Σpost states that the
location of the robot changes only due to an executed goto action.

2.5 Agent Programming in GOLOG

GOLOG [55] is a language suitable for high-level agent programming. The core
idea behind it is to formulate the agent’s capabilities (possible actions and the
current world state) by means of a basic action theory in the situation calculus and
provide macros to formulate programs defining the agents behavior. Those macros
include both deterministic control structures such as if conditionals or while loops
and non-deterministic aspects such as choice of actions, parameters or number of
iterations. This allows to mix hand-crafted behavior with dynamic decisions. The
used macros can be expanded back to formulas from the situation calculus in such
a way, that suitable courses of action can be determined by applying theorem

29 2.5 Agent Programming in GOLOG

provers to the expanded program together with the knowledge about the current
situation.
Basically, Levesque et al. [55] added program semantics to the situation calculus
to enable high-level specifications of agent behavior based on models defined by
logical formulas.

The idea is preserved in t-ESG with the available program semantics. Therefore,
agents written in GOLOG with t-ESG as logical back end aligns well with the idea to
have a high-level reasoner that operates on the same semantics as the connective
constraints expressing low-level requirements. The program semantics of t-ESG
can be used directly to define the common GOLOG macros:

• while φ do δ done := (φ?; δ)∗¬φ?
• if φ then δ1 else δ2 fi := [φ?; δ1]|[¬φ?; δ2]
• if φ then δ fi := if φ then δ else nil fi

2.5.1 golog++

Despite the flexibility to combine planning and iterative programming approaches
that high-level agent programmers gain when using GOLOG, it is safe to say, that as
of date the usage of classical planning approaches is prevalent. Matare et al. [57]
argue that an important factor to this is not due to shortcomings of the GOLOG
formalism, but rather due to more practical reasons. Classical implementations
of GOLOG are written in the logic programming language prolog and often lack
important engineering features such as consistency checks, comprehensive debug
output and documentation. As solution [57] presents golog++, a GOLOG interfacing
framework with three major concerns:

1. Representation of GOLOG programs by providing a syntax for specifying GOLOG
programs that is parsed in a templated C++ class model.
This not only provides a well defined metamodel for GOLOG programs with
consistency checks, but also yields an interface to use when integrating into
a robotic software stack.

2. Static and runtime semantics that are attachable to the programs instanti-
ated object model.
The implementation of GOLOG semantics is not specified, but rather wrapped
and applied to the metamodel, giving an interface to the logic backend.

3. Defined interfaces for acting and sensing.
A resulting GOLOG program has to be executed by some platform backend
and feedback has to be injected back to the metamodel to capture exogenous
events and the gathering of sensor data.

We are currently working towards an integration of the procedures presented in this

2 Preliminaries 30

thesis into the golog++ framework to eventually apply it to real-world scenarios.

2.6 Related Work

While related work to decouple low-level specifics from the abstract domain was
presented in [46], here we focus on work that utilizes the strong connection between
model checking and planning tasks and also present applications utilizing timed
automata in related problem settings.

2.6.1 Model Checking and Planning

The idea of using model checkers to solve planning related task is quite common
due to the similarities of the tasks, as outlined in the following.

The classical formulation of a planning problem states that given an initial state
one shall reach a goal state [66]. In order to solve such a planning instance one
can divide the procedure into three steps [39], highlighting the similarities to the
model checking procedure in Section 2.2:

1. Model the domain with the possible world states, available actions and state
transitions caused by the execution of actions.

2. Define a planning problem by specifying an initial state and a set of goal
states.

3. Generate a plan by exploring the state space starting in the initial state.
At each step logical formulas over the planning domain are evaluated to
determine suitable next actions.

Various approaches have been developed to transform planning domains into se-
mantic models and goal specifications into suiting formal system properties under
the paradigm planning via model checking. Similarly there is also active research
to aid model checking procedures with the help of advances in the field of planning,
known as the directed model checking paradigm [27].

The plan transformation approach presented in this thesis fits the planning via
model checking paradigm, as domain details are decoupled from the abstract plan-
ning process and instead integrated afterwards using model checking formalisms
and tools.

Planning via Model Checking

The potential of model checking tools applied directly to planning domains were
studied for example in [56], where the performance of different model checking
tools was measured.

31 2.6 Related Work

Firstly, a time-bounded planning problem, the bridge-crossing puzzle, was taken
with the task to find any solution that lies within a given upper bound. Three
model checking tools, namely NuSMV [26], SPIN [47] and the presented tool PAT,
competed against the planning system Metric-ff [43] with the result that, al-
though being overall slightly worse, SPIN and PAT were scaling comparably to
Metric-ff on increasing problem sizes.
Secondly, a deterministic optimal planning domain was considered, the sliding puz-
zle game, and the three model checkers were compared against the performance
of SATPlan [48], with the result that SPIN and PAT both outperformed SATPlan
on difficult instances, as their performance was relatively constant across the con-
sidered difficulties, whereas SATPLAN already showed a rapid scaling of runtime
with increasing solution length. However, solutions calculated via SPIN were not
optimal.

Research also went into the exploiting of similarities between classifications plan-
ning problem specifications, such as the different PDDL specifications [38], and the
model checking framework of SAT Modulo Theories [32] (SMT). There, boolean
skeleton formulas containing arbitrary predicates are considered, where the se-
mantics of the predicates are specified by underlying theories, allowing to freely
combine various theories and to apply theory-specific optimizations within dif-
ferent theory modules. Thus, the core idea to decouple planning specifics from
the abstract task corresponds to the work of this thesis, although the motivation
differs. Gregory et al. [40] propose to apply the ideas from SMT to planning prob-
lems by defining domains in first-order logic with sentences that describe action
precondition and effects, analogously to PDDL domain descriptions and to then
express extensions to such a problem skeleton by means of theories. The approach
was performing competitively on benchmarks versus Metric-ff.
In contrast to [40], Bayless et al. [10] propose a monotonic theory as direct addi-
tion to the SMT framework that is capable of encoding many interesting problems,
such as graph reachability and shortest path problems, which are core problems
that are tackled in the field of planning. They compare their solver MONOSAT
against classical SMT solvers, such as MINISAT [34] and z3 [31] and the Answer
Set Programming solver clasp [37] with promising results.

Directed Model Checking

A motivation behind directed model checking approaches is to utilize advances in
search techniques from the field of automatic planning when verifying or refut-
ing safety properties of systems by trying to find violating paths. Kupferschmid
et al. [51] adapt the search heuristics of the prominent FF Planning System [44]
to refute safety properties, which according to them [52] beats the performance of
state-of-the-art model checker tools.

Bogomolov et al. [16] added guided search with the help of partial plan databases
[5] to the verification of safety properties of hybrid systems [3]. In essence, patterns

2 Preliminaries 32

correspond to solutions of reachability queries on a subsystem, where subsets of
variables and states are ignored. Based on those solutions, heuristics are created
by considering minimal distances of all states in the resulting system to the error
states of interest. Bogomolov et al. propose to use a simplified version of those
pattern on-the-fly, effectively only considering a trajectory to the nearest error
state, in order to guide an ongoing reachability into the direction of possible error
states. They implemented the approach in the tool SpaceEx [36] and evaluated it
with the result that their method yields a significant performance boost.

2.6.2 Timed Automata in Planning Domains

In [63] PTAs are used to model the orders of a lacquer production plant. Or-
ders need to pass different stations which can only process one batch at a time.
Each order and each station is modeled as a PTA. Stations trigger synchronized
actions and ensure mutually exclusive usage. An order schedule was obtained
from a reachability analysis using the tool TaOpt [64] to the final states of each
order in the concurrent system. They compared their results to classical mixed
integer linear programming approaches with the conclusion that timed automata
can yield competitive results. So in essence their approach modeled existing time
constraints, given in the form of orders with deadlines, as timed automata and
utilized synchronization features to connect them to the hardware specifics. The
reachability analysis then extracts a schedule over the orders.
This is methodically similar to the second approach we explore in Section 4.1 in
a way that each constraint is modeled as a separate timed automaton. The dif-
ference to our approach is that orders in the lacquer production are independent
from each other: While one order impacts another by using a mutually exclusive
resource, after processing one order a station can be operated just like before.
Therefore the resource usage of one order constraint does not influence the way
the same resource is used in other orders. This is not the case in our setting as
the different constraints in our approach restrict the pathing of the same platform
model automaton concurrently. Therefore if one constraint forces a specific behav-
ior, this has to be recognized by all the other constraint automata as well, which
makes the encoding of constraints into timed automata a bit more involved.

Largouët et al. [54] applied PTGAs to planning in multi-agent domains. They use
the transport domain from the International Planning Competition (IPC) which is
concerned with the delivery of packages using trucks. The vehicles need to manage
their fuel and the different distances between package sources and destinations
have to be considered. Additionally, they extended the domain by a repair truck
and uncontrollable breakdowns of delivery trucks as well as explicit deadlines on
package deliveries. The task was solved in two steps by first using the PTA aspects
in order to determine the minimal costs and then analyzing the TGA related
features to find a strategy that yield the minimal costs while respecting possible
breakdowns. They evaluated their results using the existing model checking tools
from the UPPAAL suite. This work has a similar objective as we pursue as they

33 2.6 Related Work

generate a plan by means of a reachability analysis but the hurdle that they tackle
is the presence of multiple agents that all operate at the same time. In that
setting there are multiple automata representing individual entities in the world.
Meanwhile in our setting there are only two separate entities, namely the plan and
the platform model, that influence each other through defined constraints. On top
of that, the plan automaton has a simple structure (it is just a line), because we
already have an initial plan that we just have to extend. This makes it easy to
explicitly model all possible runs through the composed system and afterwards
manipulate that encoding according the given constraints. This is essentially the
approach in Section 4.1. Attempting this in a more complex setting like in [54]
would be very difficult.

34

3 Constraint-Based Plan Transfor-
mations

With the presented formalisms of Section 2 in mind, let us recap the task that is
about to be tackled. In robotic scenarios when hardware-specific details have to
be considered while reasoning about high-level objectives, we propose to keep low-
level concerns decoupled from abstract domain reasoning and instead model the
dependencies separately. Incorporation of platform details into the agent frame-
work is achieved only after an abstract plan has been determined, through a post-
processing step that transforms said plan into an executable one. The transforma-
tion has to unify the concerns of the different layers, platform specifics on the one
side and the abstract plan objective on the other side. This is achieved through
the insertions of low-level control actions into the high level plan while respecting
temporal constraints expressing the dependencies between the separated entities.

This section is concerned with providing an outline about the capabilities of the
plan transformation that is developed throughout this thesis. We first contemplate
the requirements such a plan transformation should meet, the objectives it may
achieve and the limitations that apply in Section 3.1, before outlining the necessary
interfaces between the proposed procedure and high-level reasoning frameworks in
Section 3.2. Then the formalisms of Section 2 are brought within the context of
our approach, by first discussing the role of timed automata as model for low-
level specifics in Section 3.3. Afterwards we revisit t-ESG in Section 3.4 in order
to express the temporal relations between low-level specifics and high-level plans
that build the theoretical foundation of the resulting transformation.

3.1 Requirements and Objectives

A fundamental task, when decoupling platform specifics from the abstract reason-
ing, is to identify the boundaries of the separation. Specifically, we asked ourselves
the following questions:

(I) Which part of the domain problem belong to platform specifications and
what forms the abstract domain?

(II) What dependencies connect platform models with the domain?
(III) What are the requirements and restrictions that are imposed on the plan

transformation?

Let us preface our take on the above questions by providing examples that we
imagine could benefit from a plan transformation based on separately modeled
low-level specifics:

35 3.1 Requirements and Objectives

As first use-case we consider hardware controls that are not concerned directly
with a particular abstract action, but rather depend on the plan structure.

We examine the following scenario of a gripper that is positioned by a system
of x, y, z axes, where the precision of the movement degrades with every use. A
re-calibration of an axis can be achieved by moving it to one of its endpoints. The
need to re-calibrate is determined by the number of abstract put or pick actions
that invoke axis movements. However, re-calibration should only be performed
when necessary, depending on the accumulated time spent on the execution of the
respective abstract actions.

The specification is not concerned with any particular action, but rather maintains
a stable condition of the axis movements throughout the execution by triggering
re-calibrations when needed.

As second example we consider the use of low-level actions to refine a complex
domain action.

Let us have a look at a scenario where high-level actions depend on fine-grained
low-level steps that could be optimized by considering the plan context: Again
we base the example on the task to pick up or lay down objects in an abstract
domain. A single pick operation may depend on several hardware specific steps,
e.g., having a running camera to capture data, alignment close to the object based
on the provided data, followed by the actual gripping. If the camera should only
be running on demand, then the decision to turn off it off may depend on whether
pick or put actions follow in the near future or not.

One could therefore realize the refinement of a pick or put action via a platform
model and formulate constraints to ensure triggering of the necessary low-level
calls to physically perform the abstract actions when necessary.

With the above possible use-cases in mind, we state a core assumption towards
the role of platform models in the context of abstract domains:

Assumption 3.1.1. [Towards (I)] A given abstract plan should not be modified,
but rather extended, the transformation specifically must not re-order or add/re-
move domain actions to/from the given plan.

We believe that low-level specifics should rather refine a given abstract plan, than
encode restrictions on the fundamental usability of such a plan. We specifically
aim to distinguish the plan transformation from abstract reasoning concerns. As
a consequence, this establishes a clear separation of concerns between domain
reasoning tasks and the incorporation of platform-specific actions. At the same
time boundaries apply to the types of low-level specifics that we can decouple from
the high-level domain, namely those that go against Assumption 3.1.1 by requiring
re-ordering, adding or removing of domain actions in order to be satisfiable.
The plan transformation also should not invalidate the high-level plan by the

3 Constraint-Based Plan Transformations 36

insertion of low-level control actions, which leads us to the assumption stated
below:

Assumption 3.1.2 (Towards (II)). Operations of platform components are dis-
junct from the domain of reasoning.

By demanding the high-level domain to be completely separated from the scope
of the decoupled hardware specifics we can ensure that effects of low-level control
actions do not invalidate preconditions of domain actions. In case of an agent
given via a t-ESG BAT, the contained fluents may not include platform-specific
fluents and functions.

Examples for low-level specifications that we deem to be too tight to decouple
from the abstract reasoning are given in the following:

Hardware specifics that impose direct restrictions on the actions, a reasoner may
select to achieve an objective resemble scenarios that contradict Assumption 3.1.1:

We consider a robot that may pick up objects, but has no capacity to store them
before laying them down again. Therefore, in between two pick actions there
always has to be a put action.

Decoupling this specification from the domain interferes with the idea to have a
plan transformation separated from the abstract reasoning system. We argue that
a transformation capable of transforming a plan by significantly altering the ab-
stract plan semantics raises the question whether calculating such an abstract plan
is beneficial in the first place when a considerable amount of reasoning is applied
later. While such a strong transformation may make sense in some applications,
it does collide with the idea to control platform models without deeper knowledge
of the reasoning backend.

Possible problems that Assumption 3.1.2 prevents, arise when low-level operations
that modify the domain of reasoning:

As an example, let there be a mobile robot which has to get its batteries exchanged
from time to time. In order to do so, it has to drive to a docking station. Modeling
this via a specific component can be reasonable, e.g., if there are also robots work-
ing in the same domain that have sufficient power supply for the whole operation
span. Then a domain without battery-specific information may be used on both
kind of robots, while a plan transformation adapts the plans on those robots that
have to recharge.

The assertion of actions during plan transformations that alter the abstract do-
main introduces the following problem: There is no guarantee that the resulting
plan is executable anymore by the means of the domain specification. In the above
example a platform designer might be tempted to create a model that forces the in-
sertion of a go-charge action, when the battery status reaches a certain threshold,

37 3.1 Requirements and Objectives

in order to drive to a docking station. A simple plan, such as

goto(START,TABLE), goto(TABLE,DOOR)

may be transformed into

goto(START,TABLE), go-charge(POWER-DOCK), goto(TABLE,DOOR)

effectively violating a possible precondition of goto, that the source of movement
must coincide with the current position.

The battery recharging example was chosen as it resembles a problem instance that
is rather trivial to properly handle: A platform that demands to drive to a power
station could simply move to the original position again afterwards or even better,
the plan transformation could recognize the need to adapt the source location of
the goto action. However, the generalization to detect and properly model the
allowed interferences with a high-level domain would require to make assumptions
about it, which we like to abstain from, not only due to attempted separation
of concerns, but also to keep the proposed plan transformation as compatible as
possible with the different types of reasoners. By basing constraints on the plan
structure without caring about the induced implications on the high-level domain,
the only requirement to use the transformation is to actually produce plans. This
also means that a properly modeled component to manage the battery power
can be used within our approach, as there is no notion to prevent a usage that
simply inserts platform actions in a invariant way that does not harm the high-level
reasoning. However, we emphasize that this contradicts the proposed separation
of concerns as a platform designer would have to equate for the implications to
the feasibility of domain plans.

We believe that in its core a separation of low-level specifics from the abstract
domain should enable the enforcement of precise temporal control over the hard-
ware. Independent of whether the abstract domain is concerned with temporal
constraints or not, in lower layers of a robotic platform timings often play a cru-
cial role. As evidence, we consider sensors that have to run for a while to produce
noise-corrected data, components that take time boot up and shut down or differ-
ent hardware that interferes with each other, when running at overlapping times,
e.g., depth cameras producing noise in infrared sensor data. Therefore, we propose
the following:

Assumption 3.1.3 (Towards (II)). Dependencies between platform models and
abstract plans are modeled via temporal constraints that describe temporal control
of platform actions based on action patterns occurring in the plans.

While temporal aspects may be a important both during high-level reasoning to
provide an abstract plan and during the post-processing step of applying a trans-
formation in order to meet low-level specific requirements, we argue that the re-
sponsibility to control the overall execution has to be on the side of the reasoning
framework.

3 Constraint-Based Plan Transformations 38

With all the preceding assumptions in mind, we determine the role of the plan
transformation in a robotic framework as follows:

Assumption 3.1.4. [Towards (III)] The reasoning framework produces sequential
plans together with temporal constraints that form a sufficient condition on the
high-level feasibility of said plans. Based on

• the temporal restrictions propagated by the reasoner,
• the control restrictions induced by the models and
• the temporal constraints expressing relations between high-level and low-level

the plan transformation determines an executable plan together with execution start
times for each action.

Note how the above assumption goes in accordance to Assumption 3.1.1 by that
the reasoning of the high-level framework is not altered, but rather interpreted as
hard constraint. Therefore the different concerns of domain reasoning and platform
specific adaptions are clearly distinguished.

3.2 Overview of the Procedure

Under consideration of the assumptions proposed in Section 3.1, we can now
describe the steps required to form a plan transformation procedure that uni-
fies abstract plans acquired through high-level reasoning with separately modeled
platform-specific low-level requirements. Figure 3.1 shows schematics of the full
procedure that we outline in the following:
A platform designer models lower level specifics as timed automata, explained
further in Section 3.3, and defines their control-based on the domain context via
constraints in a subset of the logic t-ESG. The constraint formulas describe the
behavior of the timed automata models through specifying domain action patterns
and their effect on the automata behavior. Details on the constraint formulas are
given in Section 3.4. Timed automata, constraints and the abstract plan are then
encoded to form a reachability model checking problem, such that there exists a
transformed plan, if and only if there is a solution path for that encoded problem.
Approaches for the encoding step are covered later in Section 4. Solution paths
are returned in the form of symbolic traces and a decoding step is necessary in
order to obtain a transformed plan together with execution times for the fastest
possible execution. The resulting executable plan can then be handed back to the
execution framework. In case practical issues cause the given execution times to
be missed, the decoder may be able to give updated execution times that still ful-
fill all constraints by calculating a different solution from the symbolic trace that
incorporates the occurred delays. The decoding steps are detailed in Section 5.

39 3.3 Platform models as Timed Automata

Agent
Reasoner Executor

Abstract Plan
Action Sequence,

Temporal Constraints

Executable
Plan

Action Sequence,
Execution Times

Platform Models
Timed Automata

Connective Constraints
t-ESG Constraints

Encoder

Model Checker
verifyta

Decoder
Symbolic

Trace

Plan Transformation
Platform Designer

Agent Programmer

Figure 3.1: Steps to transform abstract plans into executable ones based on low-
level models.

3.3 Platform models as Timed Automata

We propose to model platform specifics as timed automata such that the platform
functions are represented by locations. This is due to the fact that time only
elapses within locations and taking transitions consumes no time. Functionalities
of a componentM are triggered by the agent via actions that form the alphabet
Σ of the corresponding automaton AM. Therefore, the need to trigger a low-level
action corresponds to a state change within the automaton model. In case of the
automaton in Figure 2.1 the alphabet is Σ = {no-op, turn-on, shut-off}.

We also assume different platform models to be independent from each other in
a sense that there are no temporal dependencies between components and that
actions of different platforms can be executed in parallel. We argue that in case
different models influence each other, they could be merged together such that
their relations are encoded within the timed automaton through clock constraints.
This restriction allows us to develop a plan transformation procedure with the only
concern being to satisfy connective constraints between platform models and do-
main actions, without having to consider implications that dependencies between
different platform models may entail.

Lastly, we re-iterate that Assumption 3.1.4 implies that it is out of the scope of the
proposed plan transformation to prevent or even just detect models that poten-
tially mix low-level concerns with the abstract domain against Assumption 3.1.1,
because it is designed to only deal with the resolution of temporal constraints. The
responsible is therefore on the side of platform model designers to not construct
low-level interfaces that temper with the feasibility of high-level plans.

3 Constraint-Based Plan Transformations 40

3.4 Constraints

Dependencies between the abstract agent and platform models may include qual-
itative time constraints, as well as quantitative constraints, e.g., to specify time
windows during which a component needs to be operated in order to proceed with
the plan.
We aimed to obtain constraints that are capable of expressing the basic qualita-
tive relations between platform operations and domain actions, similar to Allen’s
interval algebra [1], with the possibility to quantify the interval lengths. As an
overview, the basic relations between intervals are depicted in Figure 3.2. However,
in the context of plan transformations where a pattern that requires the insertion
of low-level actions may occur multiple times throughout a plan, the classical no-
tion of interval relations does not really fit our needs. In particular, notions like
component M should be in state loc1 strictly after the execution of action1()
do not make sense in our application, where visiting loc1 after one instance of
action1() may also mean it is visited before the next instance of action1(). We
rather take the classical interval relations as guideline and provide constraints that
locally fulfill such relations ignoring their global context.

action < loc

action > loc

action m loc

action mi loc

action s loc

action si loc

action d loc

action di loc

action f loc

action fi loc

loc = action

Figure 3.2: Relations describing local relations between platform locations (dotted
intervals) and high-level action durations (solid intervals).

We consider two different types of constraints to establish connections between
high-level action patterns and platform model operations. Firstly, constraints that
are concerned with operations near the execution of a plan action, such as

when actioni occurs, do platform_operations afterwards/beforehand/now.

Secondly, platform operations in between the execution of high-level actions, e.g.,

when actioni occurs, later followed by actionj do platform_operations in
between.

Together they cover our needs with respect to the relations in Figure 2.6, as we
demonstrate later.

41 3.4 Constraints

3.4.1 Constraints Based on the Occurrence of Actions

Let us begin with the former constraints and derive formulas that the plan trans-
formation should be capable of handling. The resulting formulas have the form:

JδKG [ΨP ⊃ ΨM] ,

where ΨP describes a situation during the execution of δ which requires to operate
the platformM and ΨM specifies the usage ofM in that situation. Given ΨP and
ΨM we also write occ(ΨP ,ΨM) to denote such constraints. The reasoning behind
the proposed structure given above is presented now.

Semantics of JδKφ in the Context of Plan Transformations occ formulas utilize
the capability of t-ESG to restrict traces belonging to the execution of programs.
Specifically, we take a closer look at the semantics of situation formulas according
to Definition 2.4.8, that have the form JδKφ, with φ being a trace formula.

In t-ESG δ refers to a program description via Definition 2.4.3, however, the se-
mantics of JδKφ are only concerned with traces of said program, which correspond
to the possible action sequences produced by δ. In our context we are confronted
with one given plan at a time, that has to be transformed. So for us, δ can be
interpreted as a sequential plan, rather than a program description.

We illustrate how the t-ESG semantics enable the formalization of plan transfor-
mations by means of the following example:.

Let us consider a formula stating that five to seven seconds after each execution
start of an action action1() the state loc1 of platform Model should be reached:

γ := JδKG
[
Occ(action1()) ⊃ F[5,7]state(Model) = loc1

]
Also, let p = 〈(action1(), t1), (action2(), t1 + 15)〉 be the abstract plan to trans-
form, thus stating that action2 follows 15 seconds after action1. γ essentially
implies the structure of possible transformed plans for any high-level plan. For the
given plan p we are confronted with the task to find a world with empty history
〈〉 (assuming an initial world state), such that γ holds during the execution of the
transformation p̂ of p. In a first step, we remove the short-hand notations such
that we can apply the semantics of t-ESG formulas (Definition 2.4.8 and 2.4.9):

γ :=JδKG
[
Occ(action1()) ⊃ F[5,7]state(Model) = loc1

]
=JδK¬

[
F¬

[
Occ(action1()) ⊃ F[5,7]state(Model) = loc1

]]
=JδK¬

[
>U¬

[
Occ(action1()) ⊃ >U[5,7]state(Model) = loc1

]]
Now the definitions from Section 2.4 can be applied in order to satisfy γ for a
world w with history 〈〉:

3 Constraint-Based Plan Transformations 42

w, 〈〉 |=JδK¬
[
>U¬

[
Occ(action1()) ⊃ >U[5,7]state(Model) = loc1

]]
iff w, 〈〉, p̂ |= ¬

[
>U¬

[
Occ(action1()) ⊃ >U[5,7]state(Model) = loc1

]]
iff w, 〈〉, p̂ 6|=

[
>U¬

[
Occ(action1()) ⊃ >U[5,7]state(Model) = loc1

]]
iff for all z1 s.t. p̂ = z1 · p′ the following holds:

w, z1, p
′ 6|=¬

[
Occ(action1()) ⊃ >U[5,7]state(Model) = loc1

]
iff w, z1, p

′ |=
[
Occ(action1()) ⊃ >U[5,7]state(Model) = loc1

]
iff w, z1, p

′ 6|= Occ(action1()) or w, z1, p
′ |= >U[5,7]state(Model) = loc1

iff w, z1, p
′ 6|= Occ(action1()) or exists z2 s.t. p′ = z2 · p̂ and:

w, z1 · z2, p̂ |=state(Model) = loc1 and time(z1 · z2) ∈ time(z1) + [5, 7]
This provides us with the necessary information to understand how γ demands
adaptions of p leading to a transformed plan p̂. Given that we have three candi-
dates for z1 in p, namely

(1) 〈〉,
(2) 〈(action1, t1)〉 and
(3) p = 〈(action1, t1), (action2, t1 + 15)〉,

we observe that for (1) and (3) w, z1, p
′ 6|= Occ(action1()) holds, therefore only

case (2) is left to consider. However, there is no such z2 that could satisfy

time(z1 · z2) ∈ time(z1) + [5, 7]
⇔time(z1 · z2) ∈ [t1 + 5, t1 + 7]

given the possible candidates:

(1) z2 = 〈〉, then time(z1 · z2) = time(z1) = t1 /∈ [t1 + 5, t1 + 7] and
(2) z2 = 〈(action2(), t1 + 15)〉 with time(z1 · z2) = t1 + 15 /∈ [t1 + 5, t1 + 7].

Therefore, p must be extended by some entries to satisfy γ.

Let us first consider a scenario, where Model is already in loc1 before the execution
of p and does not change its state at any time. Then p does not satisfy γ due
to the fact that there is no time point [t1 + 5, t1 + 7] covered in p, even tho
state(Model) = loc1 holds there. In fact, the point-wise semantics of t-ESG trace
formulas require to additionally insert a dummy action into p in order to observe
that the required state actually is reached within the given time frame. This can be
achieved by a designated observe action that has no preconditions and no effects.
observe(Model) merely equates to explicitly checking a platform models’ current
state and has no relevance for execution. Since the proposed plan transformation
is aimed towards usage in real-world scenarios, where the accuracy of time steps
is practically determined, e.g, through the clock frequencies of the used cpu cores,
we may safely assume the observable time to be discretized through some minimal
time delta. Hence we may assume that each transformed plan contains observe

43 3.4 Constraints

actions at each discrete step, which effectively corresponds to the (practically)
continuous monitoring of low-level components during execution.

The introduction of an observe action solves the case of p′ requiring no further
platform interactions as the target state loc1 was already reached.
If we instead assume Model to be in loc0 when p starts, then γ requires the
insertion of appropriate control actions to ensure a state change to loc1 at the
specified time frame. One possible transformed plan satisfying γ, assuming Model
may change from loc0 to loc1 at any time via some action aModel and ignoring
unnecessary observe actions, can be given as:

p̂ = 〈(action1, 0), (aModel, 4), (observe(Model), 5), (action2, 15)〉

Finally, we highlight the role of the operatorG in the proposed type of constraints:
It enforces platform operations on every occurrence of a pattern ΨP , allowing us to
essentially state invariant conditions that maintain the executability of high-level
actions throughout the scope of a plan.

Specification of Action Patterns in ΨP t-ESG allows complex descriptions of
action patterns within traces, having the potential to significantly complicate the
transformation procedure. It might be tempting to define dependencies between
high-level behavior and low-level specific by associating certain domain predicates
with the need to operate a platform. Let us consider the following example to
demonstrate problems that can arise:

A robot doing grasping tasks has a domain predicate Holding and a platform
component Mgrip taking care of gripper movements. Domain actions include
several different operations to pick up objects, such as get_from_ground and
get_from_conveyor_belt, the hardware demands the gripper to move to a po-
sition parked when objects are held to reduce stress on the joints. A constraint
such as

γgrip = JδKG∃x.Holding(x) ⊃ F[0,5]state(Mgrip) = parked

would be very handy to state that the gripper gets parked independently which
action causes the predicate Holding to be true. However, this can be problematic,
depending on the successor state axiom of Holding. Consider the following ax-
iom stating that get_from_conveyor_belt only grips something every other ten
seconds:

�[a]Holding(x) ≡ a = get_from_ground(x)
∨ (a = get_from_conveyor_belt(x) ∧ time(a) mod 20 < 10)
∨ (Holding(x) ∧ a 6= drop(x))

Then the activation of γgrip depends on the action timings of the abstract plan
actions. If we assume a trace 〈(get_from_conveyor_belt, t1)〉 with t1 < 20 then
it is unclear whether γgrip should enforce the gripper to move in the parking

3 Constraint-Based Plan Transformations 44

position or not, because the exact action timing is only determined through the
transformation itself. The problem is circumvented if we formulate γgrip based on
the occurring predicate instead, via

JδKG∃x.Occ(get_from_conveyor_belt(x)) ∨Occ(get_from_ground(x)) ⊃
F[0,5]state(Mgrip) = parked.

Although it may same situation, the subtle difference is that the plan formation
does not know anything about the actual effects that domain actions carry out.
Due to Assumption 3.1.4 it is merely responsible to respect the temporal relations
between different actions, without further knowledge about the carried semantics.
Hence, if the high-level reasoner allows the execution of grasping times during
intervals, where no object can be grabbed from the conveyor, then we can assume
that the action is executable, hence it may be started. We argue that it is not the
responsibility of a plan transformation to also acknowledge, whether the execution
if domain actions yields the intended results.

For simplicity we only allow constraints, where it can be determined in advance
which patterns in a given abstract plan enforces behavior of the platform. However,
at the same time we do not want to impose restrictions on the successor state ax-
ioms of the domain for two reasons: On the one hand we deem it undesirable if the
expressive power of platform constraints restricts the abstract domain and thereby
forcing trade-offs between the reasoning capabilities of the high-level system and
the benefits of context dependent hardware control. On the other hand many rea-
soning systems do not have explicit successor state representation of predicates,
because they are not based on the situation calculus. To keep the ideas proposed
in this thesis compatible with arbitrary plan-based reasoners we instead formu-
late ΨP solely based on the structure of the plan. This can be achieved within
the t-ESG formalism by introducing a designated predicate Occ(x) with successor
state axiom

�[a]Occ(x) ≡ a = x

as it was already presented in 2.4.

Specification of Platform Behavior in ΨM It remains to formalize the temporal
relations between platform behavior and the occurrence of domain actions. Precice
timed control can be ensured by utilizing the trace operators UI and SI (and the
induced short-hand notations GI ,HI , FI and PI) with attached intervals I. The
operators XI and VI are not suited to express plan transformation rules, because
of the previously noted possibility of elements being inserted into a trace. In
particular, a constraint of the form

γX = JδKGOcc(action1()) ⊃ X[8,9]state(Model2) = loc2

would interact with the constraint γ from the above example, even tho they argue
about different platform models, which we assumed to be fully independent from
each other: The trace δres cannot possibly be extended to also satisfy γX as it

45 3.4 Constraints

would require the insertion of observe(Model2) directly after entry of action1(),
but at the same time observe(Model, 5) has to be in between observe(Model2)
and action1().

For ΨM we describe the desired behavior of M using a special fluent state that
takes as input a component name and returns the current state of it. Trace op-
erators may be used to enforce future or past behavior of the component within
time bound I.

Now we are ready to generalize constraints through the grammar in Figure 3.3.
We note that negations of 〈actionFormula〉 formulas is prohibited due to the fact
that this could cause infinity loops during transformation, e.g., a constraint stating
that whenever ¬Occ(action1()) holds, some platform has to be operated, causes
the insertion of low-level actions as entries in the plan trace, for those entries
¬Occ(action1()) holds again.

〈constraint〉 ::=JδKG [〈actionFormula〉 ⊃ 〈stateFormula〉]
〈actionFormula〉 ::= | Occ(action(~x)) | 〈actionFormula〉 ∨ 〈actionFormula〉
〈traceOpUnary〉 ::=FI | PI | GI | HI

〈traceOpBinary〉 ::=SI | UI

〈stateFormula〉 ::= 〈atomicSF 〉
| 〈traceOpUnary〉〈atomicSF 〉
〈atomicSF 〉〈traceOpBinary〉〈atomicSF 〉

〈atomicSF 〉 ::=state(Model) = loc
| 〈atomicSF 〉 ∨ 〈atomicSF 〉
| ¬〈atomicSF 〉

Figure 3.3: BNF for constraints expressing the relations between occurring actions
and platform operations. action refers to an action standard name,
~x denotes action parameters (either free variables that are implicitly
existentially quantified or standard names) and loc denotes a name
identifier of a location from a component Model

3.4.2 Constraints Based on the Duration of Actions

The previously presented constraints lack an important feature: They cannot ex-
plicitly guide platform operations based on the duration of high-level patterns,
because they only state behavior based on the occurrence of domain actions. To
overcome those issues we also provide another type of constraints that allow a
precise description of platform operations bounded in between the occurrences of

3 Constraint-Based Plan Transformations 46

two domain actions: Given a finite set B = (αj, Ij)1≤j≤n, n ∈ N with αj denot-
ing formulas built through the grammar of 〈atomicSF 〉 of Figure 3.3, Ij denoting
intervals according to the t-ESG syntax, and given β1, β2 formulas built through
the grammar of 〈actionFormula〉 stated in Figure 3.3, we define until-chain con-
straints as:

uc(B, β1, β2) := JδKG(β1 ∧X¬β1Uβ2) ⊃
(α1 ∧ ¬β2)Us

I1(α2 ∧ ¬β2)Us
I2 . . . (αn ∧ ¬β2)Us

In
β2,

where φ1Us
Iφ2 := φ1 ∧ (φ1Uφ2).

An until-chain constraint essentially states, that whenever an action pattern β1 is
followed without further occurrences of β1 by another action pattern β2, then the
platform operations between such a matching pair of domain actions a1 and a2
are given by sequentially visiting the states specified in B. Specifically, B defines
the platform usage by providing a sequence of target states Litarget through the
formulas αi, such that the component separately stays within each Litarget for a
duration within Ii. Even if Li+1

target = Litarget, then Litarget is visited for some time
within Ii, before the component remains in Li+1

target for another duration within
Ii+1. The enforcement of states from L1

target starts with the execution start of a1,
the requirement to be in Lntarget ends with the execution start of a2.

Let us consider the case of n = 1, with a constraint

γ∆ := uc [〈(state(M) = running, [0,∞))〉,Occ(start_pick(o)),Occ(end_pick(o))] ,

stating that during each execution of pick the component M has to be in state
running. We break down the constraint in order to explain the purpose of its’
different parts:

γ∆ =JδKG
[
Occ(start_pick(o))︸ ︷︷ ︸

(I)

∧X(¬Occ(start_pick(o))UOcc(end_pick(o)))︸ ︷︷ ︸
(II)

⊃ (state(M) = running︸ ︷︷ ︸
(III)

∧¬Occ(end_pick(o))︸ ︷︷ ︸
(IV)

)Us
[0,∞)︸ ︷︷ ︸
(V)

Occ(end_pick(o))︸ ︷︷ ︸
(V I)

]

Similar to occ constraints, (I) essentially describes the high-level action pattern,
here the occurrence of a start_pick action, that requires platform control. Ad-
ditionally, (II) ensures that

• start_pick is actually followed by a matching end_pick later and
• between the current instance of start_pick and the next matching end_pick,

there is no other start_pick action.

Upon finding a suitable candidate at (I), the platform has to be in state running,
specified at (III), until the matched occurrence according to (II) is encountered
in (V I), namely the end of the started pick action. The additional requirement
of (IV) scopes the matching end_pick to the next possible occurrence, instead
of an arbitrary one from the remainder of the plan. Generally, (II) and (IV)

47 3.4 Constraints

together imply that only the smallest matchings across different instances of β1
and β2 are considered to be relevant for the platform behavior specified through
B. Lastly, the modified until operator Us is used in (V) to guarantee that the
state running is actually observed. If the normal operator U was used, then
a plan 〈(start_pick(o), 0), (end_pick(o), 15)〉 would already satisfy γ∆ per the
given semantics of U in Definition 2.4.9.

A different example for the utility provided by uc formulas is the following con-
straint γprecise that contains a sequence B of length 3:

γprecise := uc
[
〈(>A, I>), (state(M) = calibrated, I[5,5]), (state(M) = parked, I>)〉,

Occ(fast_pick(o)),Occ(precise_pick(o′))
]

where >A denotes a disjunction over all states of A and I> denotes the unbounded
interval [0,∞). γprecise could model the need to calibrate a gripper whenever a
fast_pick action precedes a precise_pick action. After calibration the gripper
has to remain in a parked state such that it does not lose the calibration due
to possible collisions with other objects. The sequence in B allows unconstrained
control ofM when a fast-pick action starts, until eventually the calibrated state
is visited for precisely 5 seconds followed by a remain in parked until precise_pick
starts.

Until-chain constraints together with the normal occurrence-based constraints are
capable to express relations similar to the ones in Figure 3.2 as we summarize in
Table 3.1.

3.4.3 Constraints from the High-Level Domain

Now we are able to express temporal relations between plan actions and platform
states via the constraints above and between different platform states by directly
encoding them in the timed automaton. Temporal relations between different plan
actions are not covered yet. Complex constraints affecting the ordering of actions
have to be dealt with during the actual abstract planning already and therefore
should not concern the transformation into an executable plan.

We deem the relevant information to be covered through constraints about the
start of each action in a plan. To that end we provide two different types of formulas
acting as interface to translate the temporal restrictions of the execution to the
scope of the transformation. On the one hand the reasoner may require each action
in a plan to be started within a certain time interval. As a prerequisite we define a
function PlanOrder that allows to address the n-th plan action independent from
the performed steps of the plan transformation. Essentially, PlanOrder has to
count the number of number of domain actions that have been started already.
The successor state axiom of PlanOrder is shown below, it utilizes a designated
predicate IsDomAct that is true precisely for every plan action.

3 Constraint-Based Plan Transformations 48

Γ= ={uc [〈(αloc, I>)〉, βstart, βend]} During action the state is loc.
Γ< ={uc [Bafter, βend, βstart] ,

uc [Bafter, βend, βlast]}
after each action occurrence, loc
should be avoided for [v, w] seconds,
then loc should be visited for at least
[x, y] seconds afterwards.

Γ> ={uc [Bbefore, βend, βstart] ,
uc [Bbefore, βfirst, βstart]}

Before each action occurrence, loc
should be avoided for [v, w] seconds af-
ter loc was visited for at least [x, y] sec-
onds.

Γm ={occ
[
βend, αlocU[x,y]ᾱloc

]
,

uc [〈(ᾱloc, I>)〉, βstart, βend]}
During action, loc should be avoided,
right after action ends, loc should be
visited for at least [x, y] seconds.

Γmi ={occ
[
βstart, αlocS[x,y]ᾱloc

]
,

uc [〈(ᾱloc, I>)〉, βstart, βend]}
During action, loc should be avoided,
right before action starts, loc should
be visited for at least [x, y] seconds.

Γs =Γ= ∪ {occ
[
βend, αlocU[x,y]ᾱloc

]
} During action the state is loc. After-

wards, loc is continued to be visited for
[x, y] seconds.

Γsi ={uc
[
〈(αloc, [x, y]), (ᾱloc, I>)〉,

βstart, βend

]
}

When action starts, loc is visited for
[x, y] seconds and then avoided until
action ends.

Γf =Γ= ∪ {occ
[
βstart, αlocS[x,y]ᾱloc

]
} During action the state is loc. Before

that, loc was already visited for [x, y]
seconds.

Γfi ={uc
[
〈(ᾱloc, I>), (αloc, [v, w])〉,
βstart, βend

]
}

During action loc is only visited in the
last [v, w] seconds.

Γd =Γf ∪ Γs During action the state is loc. Also
visited directly before action loc is vis-
ited for [v, w] seconds. Also, directly af-
ter action loc is visited for [x, y] sec-
onds.

Γdi ={uc
[
〈(ᾱloc, [v, w]), (αloc, [x, y]),

(ᾱloc, I>)〉, βstart, βend

]
}

When action starts, loc is avoided for
[v, w] seconds and then visited for [x, y]
seconds before action ends.

Shorthand Notations
αloc :=state(Model) = loc βstart :=Occ(start_action()) βfirst :=Occ(first())
ᾱloc :=¬αloc βend :=Occ(end_action()) βlast :=Occ(last())

Bafter :=〈(ᾱloc, [v, w]),
(αloc, [x, y]),
(>, I>)〉

Bbefore :=〈(>, I>,
(αloc, [v, w]),
(ᾱloc, [x, y])〉

I> :=[0,∞)

Table 3.1: Modeling the basic interval relations as depicted in Figure 3.2, assuming
dedicated first and last actions to denote the begin and end of a plan.

49 3.4 Constraints

�[a]PlanOrder = n ≡(n = 0 ∧ ¬IsDomAct(a) ∧H∀a′.Occ(a′) ⊃ ¬IsDomAct(a′))
∨(n 6= 0 ∧ ¬IsDomAct(a) ∧ PlanOrder = n)
∨(IsDomAct(a) ∧ (VPlanOrder = n− 1⊕ n = 1))

Formulas to constrain the time interval I in which the n-th plan action starts can
be simply given as follows:

abs(n, I) := FI(Occ(a(~x)) ∧ PlanOrder = n ∧ IsDomAct(a))

Other than providing on the absolute bounds, where each action is started, the
domain reasoning may also depend on the relative temporal relations between plan
actions. Therefore, we also provide constraints to specify the time interval I in
between the n-th and m-th plan action, with m > n:

rel(n,m, I) := F
[
Occ(a(~x1)) ∧ PlanOrder = n ∧ IsDomAct(a)

∧ FIOcc(a′(~x2)) ∧ PlanOrder = m ∧ IsDomAct(a′)
]

50

4 Plan Synthesis as Reachability
Problem

The difficulty of creating an executable plan in our setting stems from the way
different interconnection constraints impact each other. To illustrate this, assume
we are given a platform A, a plan P that contains an action αk with argument x
and we have two interconnection constraints:

• JδKG
[
∃x.Occ(αk(x)) ⊃ F[0,30]state(A) = si

]
(Whenever αk starts we want to reach state si within the next 30 seconds.)

• JδKG
[
∃x.Occ(αk(x)) ⊃ F[0,60]state(A) = sj

]
(Whenever αk starts we want to reach state sj within the next 60 seconds.)

It is now unclear whether we should reach si before sj or vice versa. So in general we
cannot simply try to satisfy the constraints one by one but rather have to respect
them simultaneously. To tackle this we developed different encoding strategies
with varying success.

Our very first approach evolves purely around the notions of classical timed au-
tomata and can be described as a direct encoding of all possible decisions that a
plan transformation may take in order to establish a trace suiting all constraints.
While the idea is quite straightforward, the resulting automaton that forms the
encoding is huge and requires a complex implementation, which makes debugging
cumbersome. However, despite its simple nature the direct encoding significantly
outperformed the other approaches we came up with, which is why we present it
in detail in Section 4.1. One of the other attempts to find more elegant encodings
that are easier to implement and debug is outlined in Section 4.2, although we
found it to scale poorly compared to the direct encoding strategy.

4.1 Direct Encoding

A straightforward encoding for the plan transformation as proposed in the last
section can be obtained, if the different aspects, namely the components, the plan
and the constraints are combined into a single automaton. In the following we
first explain the idea by showcasing an encoding on a simple example, before we
give formal definitions on the different encoding steps.

51 4.1 Direct Encoding

4.1.1 Encoding Example

We consider the platform component Mvis from Figure 2.1, and a robot that
performs grasping tasks. Let us begin with a constraint γprep, stating that the
vision should be warming up 2 seconds prior to the execution of any pick or put:

γprep :=occ(Occ(pick(o, p)) ∨Occ(put(o, p)),H(0,2](state(Mvis) = warm-up
∨ state(Mvis) = running))

We assume the domain reasoner to dispatch a plan

P1 = 〈pick(BOOK ,TABLE), goto(TABLE , SHELF)〉

together with temporal constraints stating that the plan may be started at any
time and that it takes precisely 15 seconds to start goto after pick:

γ1
abs :=abs(1, [0,∞))
γ2

abs :=abs(2, [15,∞))
γ1

rel :=rel(1, 2, [15, 15])

Encoding a Plan The encoding we present evolves around different steps that
lead to the construction of one automaton Aenc with a designated state s, such
that every run reaching s corresponds to a timed trace satisfying the specified
constraints of the form occ, uc, abs and rel, while taking a plan P = 〈a1, . . . , an〉
as baseline. Let us denote the sets of constraints of the respective types by
Cocc, Cuc, Cabs and Crel.

As a first step, we detail how to encode the temporal constraints concerned with
high-level tasks into a timed automaton AP , such that any run on AP that reaches
s induces a timed trace of P satisfying all constraints in Cabs and Crel.

This is an easy task given that the only constraints concerning the plan actions
are specified through intervals between different actions, we construct a timed
automaton AP as follows:

• AP contains a state la for each action a ∈ P , as well as two designated states
start and fin.

• Transitions between the locations la are given through the action sequence
in P . Additionally, a transition from start to la1 , and from lan to fin are
added. So AP is simply a line.

• A clock xabs is introduced to encode the constraints of Cabs.
• For each abs(k, Ik) ∈ Cabs with (strict) upper bound w in Ik we add xabs ≤ w

(xabs < w) as invariant to lk−1. Similarly, the (strict) lower bound v in Ik is
encoded as guard xabs ≥ v (xabs > v) on the incoming transition of lk. We
may omit the addition of the trivial bounds xabs ≥ 0 and xabs <∞.

4 Plan Synthesis as Reachability Problem 52

Essentially, reaching a state lak
equates to starting ak and the value of xabs

when reaching lak
determines the time at which ak starts. We explicitly

encode the upper bounds as invariant on the predecessor states rather than
also adding it as guard to the incoming transition of lk for practical reasons:
modern model checking tools like UPPAAL do not construct the full symbolic
representation of the search space while solving model checking tasks such as
reachability queries. Instead they utilize on-the-fly constructions of symbolic
states [17] to only keep relevant symbolic paths within the memory. Having
invariants on states of a preceeding state, instead of a guard on a transition
that has to be taken later on any run reaching the state of interest may help
to abort paths early.

• For each rel(k, k′, I) ∈ Crel a new clock xk,k′ is added that is reset on the
incoming transition of lak

. Then a clock constraint encoding the lower bound
of I is added to the guard on the incoming transition of lak′

and the upper
bound is added as invariant on all states li, k ≤ i < k′.
This may be optimized by using the same clock of different constraints
rel(k1, k

′
1, I1) and rel(k2, k

′
2, I2), if if the clock usage does not overlap. In

particular, there has to be no k∆, such that k1 < k∆ < k′1 and k2 < k∆ < k′2.
For the remainder of this thesis we will use a designated clock xrel to encode
all constraints of the form rel(k, k + 1, I) as they are guaranteed to never
overlap.

Figure 4.1 shows the construction for our example plan P1. All runs from start
that reach the designated state fin in AP1 induce a timed trace through the times
at which the visited states are reached. An exemplary run with an initial clock
assignment ν0 : xabs = xrel = 0 and where fin is reached with clock values
xabs = 20 and xrel = 15 can be given as follows:

〈start, ν0〉 → 〈start, ν0 + 5〉 → 〈pick1, [{xrel} 7→ 0]ν0 + 5︸ ︷︷ ︸
:=ν1

〉

→ 〈pick1, ν1 + 15〉 → 〈goto2, ν1 + 15〉 → 〈fin, ν1 + 15〉

Based on the value of xabs at the times when reaching pick and goto we can
derive the timed trace 〈(pick, 5), (goto, 15)〉 as an abstract plan with grounded
times that satisfy Cabs and Crel.

start pick1
xrel ≤ 15

goto2 fin
{xrel}

xabs ≥ 15
∧xrel ≥ 15

Figure 4.1: Plan P1 converted to a timed automaton, action parameters are omit-
ted.

Platform Control as Reachability Problem on Timed Automata Since the
goal is to encode the whole plan transformation by means of runs reaching a

53 4.1 Direct Encoding

designated state s in some automaton Aenc, we also face the problem to encode
platform control tasks through reachability queries. We differentiate between two
different types of basic control patterns:

• Reach a state from a target set Ltarget within given bounds I.
• Remain in a set of target states Ltarget for given bounds I.

Beginning with the first task for a given platform automaton AM, we note that
the task is essentially composed out of three steps. Firstly, the platform is not
constrained up to the lower bound of I, then at some point during I some target
state may be reached, which is followed by unrestricted platform usage again. We
depict the proposed construction in Figure 4.2a taking Mvis of Figure 2.1 as an
example and proceed to explain them in more detail now:

In order to encode those steps, we may create one copy Apre of AM to represent
the free usage ofM prior to the event of reaching some state in Ltarget after I and
another copy Asat to model the unrestricted platform usage after visiting Ltarget.
The component (modeled through Apre) has to be in a one of the states from
Ltarget after enough time elapsed according to I, which should enable the move
into the copy Asat. This can be modeled with the help of a fresh clock xreach by
adding transitions from the locations of Ltarget in Apre to the respective copies
in Asat along with guard ensuring that Asat may only be reached, if the lower
bound is crossed on the valuation of xreach. Similarly to the previous encoding of
plan constraints we may encode the upper bound by adding invariants to Apre.
We conclude that any run on the automaton as constructed above visits a state in
Ltarget on every run that starts in Apre and reaches a state in Asat.

Addressing the other task, the need to remain Ltarget for the time within I, we
again provide an example construction that can be found in Figure 4.2b. We first
note that in case I contains strict bounds, we can safely relax them to be non-strict,
as the only way to remain in some states for the time within (v, w) is to already
be there at v and only leave once the time is at least w. We may use the same
trick as before to encode the given task, this time with three copies Apre,Aactive

and Asat. Apre and Asat again model the unrestricted control of AM before and
after the stay in Ltarget, while Aactive encodes the restriction to the target states
in the time within I. Again, a fresh clock xstay is introduced to formulate guards
and invariants in order to respect the relaxed time frame of I. The copies are
connected via transitions from the states Ltarget in Apre to the respective copies
in Aactive and from there to the copies in Apre.

Combining Platform and Plan Automaton Now that we have the means to
encode the high-level execution as reachability query via AP and also know how
to express control patterns of platform components in similar manner, it remains
to combine both constructions, such that patterns according to the constraints
from Cocc and Cuc can be encoded during the modeled execution of P within AP .
To achieve this, the proposed procedure starts with the simplest case, where no

4 Plan Synthesis as Reachability Problem 54

Apre Asat
power-off

warm-up running

xreach ≤ 15

xreach ≤ 15 xreach ≤ 15

power-off

warm-up running

xreach > 7 xreach > 7

(a) Ensuring a visit of warm-up or running in (7, 15] seconds.
Apre Aactive Asat

power-off

warm-up running warm-up
xstay ≤ 2

running
xstay ≤ 2

power-off

warm-up running

xstay ≤ 0

xstay ≤ 0 xstay ≤ 0

{xstay} {xstay} xstay ≥ 2 xstay ≥ 2

(b) Remain in warm-up or running for 2 seconds.

Figure 4.2: Encoding Patterns to guide platform behavior. Dashed lines indicate
successor transitions.

restrictions toM apply, as baseline encodingAbt that then gets extended step-wise
for every constraint within Cocc and Cuc.

Towards the construction of Abt we utilize the structure of the plan to divide the
execution into the different time spans between the start of consecutive high-level
actions. Therefore, we start with the automaton AP , which had the property that
every run from start to fin corresponds to one of the timed trace of P satisfying
the constraints Cabs∪Crel. The goal of Abt is to have an initial state, corresponding
to the state start of AP and the initial state of AM, from which every run that
reaches fin induces a valid trace of a transformed plan of P according to Cabs∪Crel.
In particular, the runs may express every possible movement withinM during P .

The construction essentially replaces each state in AP , except fin, by a copy
of AM, such that the copy replacing lak

corresponds to the possible platform
operations between the start of the domain actions ak and ak+1, hence partitioning
the continuous execution of M into finitely many separated pieces. The copy at
start models the possible behavior of M before the first plan action is started.
Required steps towards Abf given AP = (Lp, start, EP , IP) are shown below:

• For each state l ∈ LP \ fin create a copy Al of AM. ak and also add a
designated state Afin.

• For each state l ∈ LP \ fin add the invariant IP (l) of l to each state in the
corresponding Al.

• For each plan transition e = l
g,a,r−−→ l′ ∈ EP add transitions from each state

s in Al to the corresponding copy s′ in Al′ (or to fin, if l′ corresponds to
fin of AP) with the same annotations: s g,a,r−−→ s′

55 4.1 Direct Encoding

Since the whole structure of AP are carried over to Abt, every run on Abt starting
from the initial state of AM in the copy Astart that reaches fin also induces a
timed trace that satisfies the plan-specific constraints.

The construction of Abt is depicted schematically in Figure 4.3.

Astart Apick Agoto
fin

{x1,2}

{x1,2}

{x1,2}

x1,2 ≥ 5 ∧ xabs ≥ 15

x1,2 ≥ 5 ∧ xabs ≥ 15

x1,2 ≥ 5 ∧ xabs ≥ 15

invariant:
x1,2 ≤ 15

Figure 4.3: AP1 and AMvis combined into Abt.

Constraint Encoding Starting from Abt, the constraints from Cabs∪Crel can now
be incorporated by utilizing patterns to control platform behavior, similar to the
ones shown earlier. This is done by applying the following steps to each constraint
γ ∈ Cabs ∪ Crel:

(1) Determining the domain actions that trigger the activation of γ (the need to
manipulate the component).

(2) Calculating the context that γ influences (with respect to domain actions
that may be started while γ enforces a certain behavior of the component).

(3) Encoding the possibilities to satisfy γ.

We start with the encoding of γprep and detail the necessary steps in the following:

The activations of γprep are obtained by looking at the occurrences of grasping
actions in P . In our example plan P1 this yields the first plan action pick, con-
cluding (1).
γprep is concerned with the past two seconds relative to the actions where it gets
active, indicated by the path operator H(0,2] (Historically). We may utilize this
information, by considering the partition of the execution span along the actions to
determine during which of those intervals the platform operation has to take place.
By imposing a strict lower bound inH(0,2], the restrictions of γprep are applied only
to all entries prior to the occurrence of pick in δ. With the construction of Abt

in mind, we may conclude that the relevant context of γprep has to be covered by
those automata copies within Abt, that model the execution before pick, hence
before the copy Apick, and that cover the complete operation window of γprep. For
the given example plan P1 this is simply the copy Astart, if the lower bound in
H(0,2] was non-strict instead, the copy Apick must have been taken into account as
well as this would include the execution at the exact time of pick which is outside
the scope of Astart.

By identifying the respective copies in Abt the task (2) is finished and we are left
to encode the enforcement of γprep in the copy Astart. Since γprep demands that

4 Plan Synthesis as Reachability Problem 56

M stays within Ltarget = {warm-up, running} for two seconds prior to pick we
may use a similar idea to the one shown in Figure 4.2b. The only difference is in
fact, that while in Figure 4.2b the encoding assumes a future restriction to Ltarget

starting from Apre, we have to take care of a past encoding relative to Apick at
some time during Astart. In fact, we could describe the encoding task as follows:
At first,M may be operated freely according to Astart, which we model through a
copy Aprep

pre of Astart. When the right time has come, the behavior ofM according
to Astart has to be restricted to the target states Ltarget, denoted by a copy Aprep

active

of Astart. Two seconds afterwards the time has to be equal to the activation start
of prep and the restriction of γstart end, modeled by a third copy Aprep

sat . This
third copy essentially models the unrestrained control of Mvis once the time to
start put has come, but is not carried out yet, allowing for traces such as:

〈(warm-up, 0), (no-op, 2), (shut-off), 4), (put,4)〉

We connect Aprep
pre ,A

prep
active and Aprep

sat similar as done in Figure 4.2b with transitions
connecting the respective copy states of Ltarget. Utilizing of a fresh clock x1

prep we
can encode the temporal relations between the three automata copies as follows:

• The clock is reset on the transitions to Aprep
active, essentially modeling a non-

deterministic choice to move to Aprep
active in anticipation of the start of pick

in two seconds.
• Invariants x1

prep ≤ 2 on each state in Aprep
active along with guards prep1 ≥ 2 on

the transitions from Aprep
active to Aprep

sat ensure a stay in Aprep
active for exactly two

seconds.
• Invariants x1

prep ≤ 2 on each state in Aprep
sat enforce that no time elapses in

Aprep
sat as the incoming transitions carry the aforementioned guards x1

prep ≥ 2.

It remains to actually integrate the construction of Aprep
pre ,A

prep
active and Aprep

sat into
Abt, which is a straightforward task: Astart is simply replaced by the three copies,
incoming transitions into Astart instead connect to the states in Aprep

pre (since Astart

was the first copy within Abt there are no incoming transitions), outgoing transi-
tions from Astart to Apick instead originate from Aprep

sat . The resulting automaton
Aenc can be found in Figure 4.4. An equivalent description of the encoding could
state that two forks from the base timeline of Abt at the sub-automaton Apick were
created in order to realize the eventual stay in Ltarget followed by unrestrained op-
erations, before starting pick.

Extending the Example In order to showcase the procedure of encoding even
more constraints, we extend our example and consider the plan

P2 = 〈pick(BOOK, TABLE), goto(TABLE, SHELF), put(BOOK,SHELF)〉

that picks up a book from a table and places it on a shelf, the reasoner imposes
the following additional restrictions, stating that between goto and put [30, 45)

57 4.1 Direct Encoding

power-off

warm-up running

power-off

warm-up running

power-off

warm-up running

power-off

warm-up running
fin

Apick Agoto

runningwarm-up

{x0
prep}

x0
prep ≤ 2 x0

prep ≤ 2

x1
prep ≤ 2

x1
prep ≤ 2 x1

prep ≤ 2

{x0
prep}

x1
prep ≥ 2 x1

prep ≥ 2

Aprep
pre

Aprep
active

Aprep
sat

Figure 4.4: Aenc resulting from integration of γpre into Abt for the plan P1. Only
annotations towards the encoding of γpre are shown.

seconds may elapse.

γ3
abs :=abs(2, [45,∞))
γ2

rel :=rel(2, 3, [30, 45))

We assume the following constraints in addition to γprep:

γeco :=occ(Occ(goto(s, d)),F[0,3]state(Mvis) = power_off)
γdata :=occ(Occ(pick(o, p)) ∨Occ(put(o, p)), state(Mvis) = runningU[10,10]>)
γeco enforces the vision to be powered off shortly after starting a goto action and
γdata requires the vision to be running for the first 10 seconds of each grasping
action.

The plan automaton AP2 is shown in figure Figure 4.5, from which we can perform
the same steps as before to get Abt.

start pick1
xrel ≤ 15

goto2
xrel < 45

put3 fin
{xrel} {xrel}

xabs ≥ 15
xrel ≥ 15

xabs ≥ 60
xrel ≥ 30

Figure 4.5: Plan P converted to a timed automaton, action parameters are omit-
ted.

The encoding of γprep is done analogously, however the constraint activates also
due to put, requiring it to be encoded twice, once to replace Astart of Abt and
once to replace Agoto.

Considering γeco now we can follow the three steps presented before again: the
activation is at the occurrence of goto, the context of γprep is during the time

4 Plan Synthesis as Reachability Problem 58

between goto and pick, because γ2
rel states that in the meantime at least 30

seconds elapse, while γeco is only concerned with the following [0, 3] seconds once
goto starts (through F[0,3]). Therefore, he relevant time window of γeco is covered
by the three copies of AMvis added through the previous encoding of γprep to
replace Agoto.

The encoding is done in similar fashion: The operator F[0,3] can be represented
through the pattern from Figure 4.2a. In order to respect the bounds [0, 3], a
fresh clock xeco is introduced that has to be reset on transitions between the
preceding pick and goto. Forks are created (representing Aeco

sat) from the existing
timelines (resembling Aeco

pre), that get connected via copy transitions between the
states power-off. The incoming and outgoing transition into/out of the original
forks are instead applied to Aeco

pre and Aeco
sat. The result is an encoding of the time

between goto and put via six copies of AMvis .

Lastly, the constraint activation γdata at pick can be encoded via two copiesAdata
active

and Adata
sat of Apick, one modeling the restriction to running, while the other allows

for the possibility to freely operateM again 10 seconds after pick started. A fresh
clock x1

data is introduced in order to track the time upon starting pick up to to
the point, when the transition to Adata

sat may happen. The resulting automaton is
shown in Figure 4.6.

Pitfalls and Optimizations The creation of automata copies to encode the plan
transformation problem can lead to a huge resulting automaton, e.g., the encoding
grows fast through constraints that

• are activated often,
• could be satisfied anywhere in a large context during the execution of high-

level actions,
• require the introduction of a fresh clock for each activation and
• barely restrict the platform behavior, such that the added copies are roughly

of the same size as the original platform automaton.

A constraint that is worst in the above sense can be easily given via:

γbad := occ(
∨
a∈A

Occ(a(~xa)),F[0,v]
∨

l∈LM\l0

state(M) = l),

where A denotes the finite set of all possible action standard names, v is an integer
that is larger than the sum of all action duration lower bounds of entries in a high-
level plan P andM is a platform model with states L.

The constraint γbad essentially demandsM to not be in some specified location l0
somewhere during the scope of the plan after starting any domain action, hence

• it activates on every occasion during P ,
• due to the choice of v the context of each activation is always the whole

59 4.1 Direct Encoding

power-off

warm-up running

power-off

warm-up running

power-off

warm-up running

power-off

warm-up running

power-off

warm-up running

power-off

warm-up runningrunning running
fin

running runningwarm-up warm-up

power-off

warm-up running

power-off

warm-up running

warm-up running

{x2
eco}

{x2
eco}

{x2
eco}

{x2
prep}{x2

prep}

x2
prep ≥ 2 x2

prep ≥ 2

{x1
prep}{x1

prep}

x1
prep ≥ 2 x1

prep ≥ 2

x2
data ≥ 10

{x2
data}

x1
prep ≤ 2 x1

prep ≤ 2

x1
prep ≤ 2

x1
prep ≤ 2 x1

prep ≤ 2

{x3
prep}{x3

prep}

x3
prep ≥ 2 x3

prep ≥ 2

x4
data ≥ 10

{x4
data}

x3
prep ≤ 2 x3

prep ≤ 2

x3
prep ≤ 2

x3
prep ≤ 2 x3

prep ≤ 2

x2
eco ≤ 3 ∧ x2

prep ≤ 2

x2
eco ≤ 3 ∧ x2

prep ≤ 2x2
eco ≤ 3 ∧ x2

prep ≤ 2

x2
eco ≤ 3 ∧ x2

prep ≤ 2 x2
eco ≤ 3 ∧ x2

prep ≤ 2

x2
eco ≤ 2

x2
eco ≤ 2 x2

eco ≤ 2

Figure 4.6: TA encoding plan, component and interconnection constraints. Only
annotations concerning the encoding of γprep, γeco and γdata are shown.

remaining plan,
• it requires a clock on each activation to track the distance to the respective

activation time point and
• the copies that have to be created are of size |L| − 1.

An implementation without further optimizations would therefore create |P | copies
for the initial timeline, |P | copies for the first activation, 2(|P | − 1) copies on the
next activation (because the copies of the previous activations are copied again),
followed by 4(|P | − 1) copies and so on, for a total of

|P |+
∑

0≤i<|P |
2i(|P | − i) = 2n+1 − 2

copies with
2n+1 − 2

2 |L|+ 2n+1 − 2
2 (|L| − 1) = (2n − 1)(2|L| − 1)

platform states just for the encoding of a single constraint. The considerations to
craft worst-case examples may prove helpful when designing platform constraints

4 Plan Synthesis as Reachability Problem 60

as it suggests that the plan transformation performance works best if the con-
straints are modeled with the following in mind:

• Constraints should activate only when really necessary.
In a scenario, where γbad would accurately model some platform behavior, a
different angle on the situation may provide an equivalent constraint. γbad

essentially models that the l0 should be avoided at some point during any
plan execution, which may also be achieved by only activating it on the first
occurring plan action, through introducing a designated dummy action that
is appended to each plan.

• Constraints that significantly restrict the platform behavior through parts of
the execution may help improve the resulting encoding.

• The encoding size heavily depends on the execution context of the con-
straints, keeping the context as short as possible may be beneficial for the
plan transformation.
Utilization of domain specific knowledge may help restraining platform infor-
mation either through time bounds, by specifying intervals I on the available
trace operators when using occ constraints, or context based, by using until-
chain constraints uc when the platform operations are bounded by some
high-level patterns.

Aside from appealing to the platform designers to be aware of the impact the
modeled constraints have on the plan transformation encoding, some common
optimizations may be considered during the construction of such encodings.

Pruning the Encoding A basic step that may greatly simplify the constructed
model checking problem is to detect dead ends with respect to possible runs
through the system that reach the designated final state fin. Automata copies
that do not have any outgoing edges to other copies are obvious candidates that
may be deleted recursively, because they cannot be visited on any run that reaches
fin. Upon closer inspection of Figure 4.6 there is a dead end that can be spotted
by inspecting the time windows of active constraints during the execution of a
high-level action. During goto the case of satisfying γprep before γeco is encoded,
which is infeasible, because goto takes at least 30 seconds and γprep restricts the
platform usage during the first 3 seconds while γeco demands the behavior within
the last 2 seconds, leaving a gap of at least 25 seconds. One may be able to de-
tect those implicit dead ends by deeper analysis of the partitioned time intervals
between the occurrence of domain actions, which we consider outside of the scope
of this thesis.

Recycling Clocks Constraints that activate on multiple occasions during a run
may not require the addition of a fresh clock on each activation. If the execution
contexts of different activations do not overlap, the same clock may be reused

61 4.1 Direct Encoding

again, e.g., the clock x3
prep is not necessary in Figure 4.6, because the clock x1

prep
can be reused. We note that not only the context where constraints activate has to
be considered, but also the span from the domain actions triggering the activations.
The necessity can be easily demonstrated through the following constraint:

γlate := occ(Occ(action1()),F[35,40]state(M) = loc1)

Given a plan 〈action1(), action2(), action1(), action3(), action3()〉, where
action1 and action2 take 10 seconds each and action3 takes 20 seconds to ex-
ecute, γlate is active during the first (second) execution of action3 due to the
trigger at the first (second) occurrence of action1, as depicted in Figure 4.7. Even
tho their active window is distinct, the span where the associated clocks track the
time in order to satisfy the bound within γlate are overlapping. Therefore, two
different clocks are required in order to encode the distinct activations of γlate.

20s 40s 60s 80s

action1
action2

action1
action3

action3

γlate

γlate

Figure 4.7: Activation duration versus clock usage windows.

4.1.2 Auxiliary Functions

Heading towards defining the formal steps necessary to encode the different con-
straints we begin with establishing common notations for the remainder of this
section.

We denote the high-level plan to transform by P with P = 〈p0 = start, p1, . . . , pn〉
and denote the intervals describing the time frame between pi to pi+1 by bi, for
0 ≤ i < n. We also write Pb = 〈(p0, b0), (p1, b1), . . . , (pn, bn)〉 to reference the
action with the associated intervals. Those intervals can be obtained by looking
at the constraints Cabs ∪ Crel. For the scope of this thesis we are going to assume
that the high-level reasoner explicitly states all relations such that no further
relations can be deduced, e.g., if abs(1, [0, 4]), abs(2, [0, 10]) and rel(1, 2, [5, 5])
holds, it is possible to deduce abs(2, [5, 9]), hence the reasoner should provide it.
We also assume that trivial relations are also explicitly stated, such that for each
1 ≤ k ≤ n there exists a constraint abs(k, Ik) (Ik = [0,∞) as default value) and
for each 1 ≤ k < n, rel(k, k + 1, Ik) is also given (again with default value Ik).
Therefore the bounds bi can be given via:

• b0 = [0, w] (b0 = [0, w)) for a (strict) upper bound of w in I1 of abs(1, I1)
• bk = Ik for relk, k + 1, Ik, for 1 ≤ k < n

4 Plan Synthesis as Reachability Problem 62

• bn = [0,∞)

Further we refer to the platform model to control as AM with locations LM, the
automaton forming the encoding is called Aenc, initialized via Aenc = Abt (see
Figure 4.3). We also utilize the following auxiliary functions:

• copy(A, Ltarget) creates a copy of an automaton A and deletes all states
not included in Ltarget from the copy. If no states should be deleted, then
the second parameter is omitted.

• addInvariants(A,A′, φ) extends the invariants of all states in A′ that is a
sub-automaton of A to contain the clock constraint φ (concatenation with
∧).

• addCopyTrans(A,A′, Ã, φ, u, Ltarget) adds copy transitions (as done in
Figure 4.2) from A′ to Ã that are both sub-automata of A. Additionally
annotates the added transitions by a clock constraint φ and update set u.
Optionally a state Ltarget may be supplied, which then only adds transitions
to Ltarget within Ã.

• addSuccTrans(A,A′, Ã, φ, u, Ltarget) similar to addCopyTrans, but
creates transitions that simultaneously move from A′ to A′, while taking
a transition t within AM. Hence the added transition also get the same
annotations as t, extended by φ and u.
Successor transitions are required if progression from one set of target states
Ltarget into another set L′target, has to be enforced. This becomes necessary
when encoding constraints of the form occ(β, α1UIα2) (progression from α1
to α2), occ(β, α1SIα2) (transitions from α2 to α1) and uc(B, β1, β2) (along
the sequence of αi within B, if B is a sequence of length >1).

• timelines(A, i, j) returns the sub-automaton within Aenc spanning from the
execution after pi start until after pj, e.g., timelines(0, 1) for the encoding in
Figure 4.4 covers everything, except fancyAgoto and fin.

• addToIncTrans(A, i, φ, u) extends the clock constraints and updates of
transitions within A that reach from the timeline forks during pi−1 to the
ones during pi.

• restrictStates(A,A′, Ltarget) deletes all states from the sub-automaton
A′ of A that are not contained in the target set Ltarget.

• shiftOutgoingTrans(A, j,A′, Ã) Changes the sources of transitions
within A that originate in timeline forks during pj in the sub-automaton A′
to instead originate from the corresponding copy states in the sub-automaton
Ã.

To further simplify the procedural descriptions, we establish some shorthand no-
tations to describe clock constraints:

• satUB(x, I) denotes x < w for I = 〈v, w) and x ≤ w for I = 〈v, w]. In the

63 4.1 Direct Encoding

special case of I = 〈v,∞) it equates to >.
• unsatLB(x, I) denotes x ≤ v for I = (v, w〉 and x < v for I = [v, w〉.
• unsatUB(x, I) denotes x ≥ w for I = 〈v, w) and x > w for I = 〈v, w]. In

the special case of I = 〈v,∞) it equates to ⊥.
• satLB(x, I) denotes x > v for I = (v, w〉 and x ≥ v for I = [v, w〉.
• In similar fashion we define belowOrEqUB, aboveOrEqUB,

belowOrEqLB and aboveOrEqLB to always contain the non-strict
comparison ≤ or ≥.

In order to calculate the context of a constraint activation, so the window of domain
actions during which some behavior is enforced we utilize the operators from the
algebra over bounds as described in Section 2. To that end we treat intervals I as
tuple of bounds, e.g. I = [v, w) consists of ub(I) = 〈w,<〉 and lb(I) = 〈−v,≤〉
(negative value because the algebra was defined based on upper bounds). The
context calculation for a constraint that imposes platform restrictions in the Ic
from the activation at the start of some domain action pk then boils down to the
following two steps: Firstly, The first high-level action that may lay within the
context of Ic is determined by accumulating the upper bounds of the durations
of actions in P that get executed from pk onward until the lower bound of Ic is
crossed. This essentially skips through all plan actions that are guaranteed to be
executed before Ic. As second step, the last action within P that may lay inside Ic is
calculated by accumulating the lower bounds of action durations from pk onward,
until the upper bound of Ic is crossed. Any action afterwards is ensured to be
outside of the context given through Ic. The procedure is depicted in Algorithm 1.

4.1.3 Encoding occ(β,GIα)

A constraint of the form occ(β,GIα) requires AM to be within the target states
Ltarget defined by α for the interval I after the execution start of domain actions
specified in β. This essentially equates to counting upwards from an activation
at some plan action pk, until the time has come (according to the interval I) to
become active by remaining in the target states until the scope of I is passed. The
scope within the plan may be expressed in terms of actions pi and pj in between
which the time described by the interval I elapses. A Schematic drawing given
in Figure 4.8 visualizes the proposed transformation. The necessary steps upon
encountering an activation of occ(β,GIα) at a domain action pk are given in the
following and can be summed up to the algorithm in Algorithm 2:

1. The first step is to calculate the context 〈i, j〉 from pk with respect to I via
Algorithm 1. The copies of AM that lay within the range between pi and pj
are those, from which it may become necessary to move to the target states.

2. A clock xclock is introduced to the current encoding Aenc that gets reset on

4 Plan Synthesis as Reachability Problem 64

Algorithm 1 calculateContext(k, I, P) Calculate Context of Constraint Ac-
tivation within a Plan
Require: Pb = 〈(p0, b0), (p1, b1), . . . , (pn, bn)〉, start, bc
Ensure: 〈i, j〉 . Context within P from pstart + bc

1: i, j ← start
2: lb_acc← 〈0,≤〉
3: ub_acc← 〈0,≤〉
4: for all (pk, bk) in 〈(pstart, bstart), . . . , (pn, bn)〉 do
5: lb_acc← lb_acc + lb(bk)
6: ub_acc← ub_acc + ub(bk)
7: if ub_acc < |lb(bc)| then
8: i← i+ 1
9: end if

10: j ← j + 1
11: if |lb_acc| > ub(bc) then
12: return 〈i, j〉
13: end if
14: end for
15: return 〈i, j〉

the incoming transitions to the forks at the execution of pk. This initiates
the counter to reach the range within I from pk onward.

3. Then we create copy Aactive of the context 〈i, j〉 that restricts usage to the
target states. They resemble the need to actually remain in the target states
Ltarget somewhere between pi and pj due to xclock crossing the lower bound
of I.

4. Yet another copy Asat of the context 〈i, j〉 then models the execution after
the activation of occ(β,GIα) is satisfied.
Here we can reapply the idea of an execution context again: The first action
pi of the context represents the earliest action during which occ(β,GIα)
possibly enforces the stay in Ltarget up to the point when cclock crosses w.
This also implies that from pi on a minimum time of w − v may elapse
before Asat can be reached. So instead of copying the whole context of 〈i, j〉,
we can replace i by the lower end of the context starting at i with interval
[w − v, w − v].

5. We then have to establish connections from the original context over Atarget

to Asat, which we may do by utilizing copy transitions.
6. Utilizing clock constraints on transition guards and invariants we can con-

straining the system such that any valuation of the clock xclock after pk that
lies within I requires the current state to be within the target states, hence
in Aactive.
Because the trace operator G requires the system to be in Ltarget for the

65 4.1 Direct Encoding

pk−1 pk

{x}

pi−1

.

pi

x ≤ v

pi′

x ≤ v

pj

x ≤ v.

x ≥ v x ≥ v x ≥ v

.

x ≥ w x ≥ w

. . .

pj+1

orig_context
Acontext
Asat
restriction to Ltarget

Figure 4.8: Encoding of occ(β,GIα), with a clock x to constrain the platform usage
to an interval I = (v, w) relative to the start of pk. I describes a dura-
tion covered between the high-level actions pi and pk (orig_context)
during which at some point x crosses v at which point the target states
have to be reached (Acontext). the platform has to remain there un-
til x crosses the upper bound, at which point normal execution may
continue (Asat).

whole duration of I we have to relax any strict bound to a non-strict one
within I when formulating the clock constraints. This is due to the fact that
time can only elapse in states, hence the only way to satisfy the semantics of
G formulated on strict bounds is, to already (still) be in Ltarget at the sharp
endpoints of I.

7. Lastly we ensure a stay in Aactive on any run in AMenc that reaches fin by
moving outgoing transitions of the timeline forks during pj to the respective
copies in Asat.

Algorithm 2 encode(occ(β,GIα)) at occurrence pk
Require: k, xclock,Aenc, Ltarget, I = 〈v, w〉, Pb
Ensure: A′enc . Encoding of occ(β,GIα) at pk into Aenc

1: 〈i, j〉 ← calculateContext(k, I, Pb)
2: orig_context← timelines(Aenc, i, j)
3: Asat ← copy(orig_context)
4: 〈i′, j′〉 ← calculateContext(i, [w − v, w − v], Pb)
5: Aactive ← copy(timelines(Aenc, i

′, j), Ltarget)
6: A′enc ← Aenc ∪ Aactive ∪ Asat

7: addToIncTrans(A′enc, k,>, {xclock})
8: addInvariants(A′enc, orig_context,belowOrEqLB(xclock, I))
9: addCopyTrans(A′enc, orig_context,Aactive,aboveOrEqLB(xclock, I), ∅)

10: addCopyTrans(A′enc,Aactive,Asat,aboveOrEqUB(xclock, I), ∅)
11: shiftOutgoingTrans(A′enc, j, orig_context,Asat)
12: return A′enc

4 Plan Synthesis as Reachability Problem 66

4.1.4 Encoding occ(β, α1UIα2)

The previous constraint type essentially describe two fixed time intervals through
the attached interval I = 〈v, w〉, the duration up to v, where no restriction is
imposed yet and then the duration from v to b, where the platform is restricted
to the target states. Constraints of the form occ(β, α1UIα2) are only concerned
with the enforcement of α1 up to some point during I, leading to a comparably
small encoding. The idea is exactly the same: Using a clock to count up to the
time within I we can enforce the transition from the target states of α1 to α2 at
the appropriate times. Actions pi and pj are determined to scope the position of I
relative to the domain actions. The procedure is illustrated in Figure 4.9 and we

pk−1 pk

{x}

pi−1

.

pi

x < w

pj

x < w. . .

x > v x > v

. . .

pj+1

orig_context
Asat

restriction to L1
target

Figure 4.9: Encoding of occ(β, α1UIα2) for an interval I = (v, w) and using a clock
x from the occurrence of pk onward. Platform control is restricted to
α1, until x reaches the range if I, which happens somewhere between
the high-level actions pi and pj (orig_context). From there on, the
target states of α1 may be left by transitioning into a state from α2
(Asat). Thick dashed edges indicate successor transitions.

again give the steps towards an algorithm that can be found in Algorithm 3. The
necessary steps are:

1. Calculating the context from k with respect to I.
2. Introducing a clock xclock to Aenc that gets reset on the incoming transitions

to the forks at the execution of pk
3. Creating a copy Asat of the context 〈i, j〉.
4. Restricting the original context from k to j to the target states described

through α1.
5. Adding copy and successor transitions to connect the forks from i to j to the

respective copies in Asat.
6. Constraining those transitions to require a valuation of xclock within I.
7. Enforcing a visit in Asat on any run in AMenc that reaches fin by moving

outgoing transitions of the timeline forks during pj to the respective copies
in Asat.

67 4.1 Direct Encoding

The encoding of constraints occ(β,FIα) follows the exact scheme as FIφ = >UIφ
and therefore is also covered.

Algorithm 3 encode(occ(β, α1UIα2)) at occurrence pk
Require: k, xclock,Aenc, Ltarget, I = 〈v, w〉, Pb
Ensure: A′enc . Encoding of occ(β, α1UIα2) at pk into Aenc

1: 〈i, j〉 ← calculateContext(k, I, Pb)
2: orig_context← timelines(Aenc, i, j)
3: Asat ← copy(orig_context)
4: A′enc ← Aenc ∪ Asat

5: addToIncTrans(A′enc, k,>, {xclock})
6: restrictStates(A′enc, orig_context, L1

target)
7: addInvariants(A′enc, orig_context, satUB(xclock, I))
8: addCopyTrans(A′enc, orig_context,Asat, satLB(xclock, I), ∅, L2

target)
9: addSuccTrans(A′enc, orig_context,Asat, satLB(xclock, I), ∅, L2

target)
10: shiftOutgoingTrans(A′enc, j, orig_context,Asat)
11: return A′enc

4.1.5 Encoding occ(β,HIα)

Encoding the past as required by occ(β,HIα) involves similar steps as they are
used to construct the encoding of the counterpart constraints γG, the two main
differences being that the context calculation has to be adapted and that the clock
encoding qualitative temporal information of I is used in different way:

Constraints concerned with the future reset a clock to zero and then treat the
current clock value as a counter towards the interval of interest, while constraints
that specify past behavior rather guess the correct time to reset a clock, indicating
that the upper bound of the target interval relative to the activation at pk is
reached, and then count up towards the present.

Towards the necessary adaptions of calculateContext we observe that the ba-
sic procedure remains to be the calculation of those domain actions, during which
a specified interval I (relative to a current action pk) is located, by accumulating
over the given action durations. The main difference is that the plan has to tra-
versed backwards from pk. The duration of pk itself has to excluded, because only
the past prior to the execution start of pk is of interest.

Now it is a straightforward task to adapt Algorithm 2 in order to handle
occ(β,HIα), the same steps apply, but the clock constraints and the transitions
that update the clock change. Comparing Figure 4.8 with the schematic depiction
to encode occ(β,HIα) that can be seen in Figure 4.10, we note that they essentially
are a mirror image of each other. Hence the algorithm depicted in Algorithm 5
follows similar steps.

4 Plan Synthesis as Reachability Problem 68

Algorithm 4 calculateContext′(Start, I, Pb) Calculate Past Context of
Constraint Activation within a Plan
Require: Pb = 〈(p0, b0), (p1, b1), . . . , (pn, bn)〉, start, bc
Ensure: 〈i, j〉 . Context within Pb from pstart - bc

1: P ′ ← 〈(pstart−1, bstart−1), (pstart−2, bstart−2), . . . , (p0, b0)〉
2: 〈i, j〉 ← calculateContext(0, bc, P ′)
3: 〈i, j〉 ← 〈start− j − 1, start− i− 1〉
4: return 〈i, j〉

pk−1

x ≤ w

pk

x = w

pi pi′ pj

.

{x} {x} {x}

x ≤ z x ≤ z x ≤ z.

.

x ≥ z x ≥ z

x ≤ w x ≤ w

. . .

. . .

pj+1

x ≤ w

orig_context
Acontext
Asat
restriction to Ltarget

Figure 4.10: Encoding of occ(β,HIα) for an interval I = (v, w) and a clock x at the
activation of pk. I describes a time prior to pk that is bound between
the start of actions pi and pk (orig_context). From there on x gets
reset and the target states of α are visited for the duration spanned
by I (Acontext). Afterwards the component may be freely operated
(Asat) until pk is reached with x having the upper bound w of I as
value.

4.1.6 Encoding occ(β, α1SIα2)

In very similar manner we can adapt Algorithm 3 to obtain the encoding of con-
straints occ(β, α1SIα2) as the operator S is essentially the counterpart for reasoning
about the past to the operator U. Algorithm 6 depicts the necessary step towards
an encoding of occ(β, α1SIα2) and Figure 4.11 provides a graphical illustration of
the procedure.

4.1.7 Encoding uc(B, β1, β2)

Until-chain constraints uc(B, β1, β2) can be encoded by applying steps from the
construction of constraints with operator U (Section 4.1.4) for every entry of B.
The context within the plan moves according the lower bounds on the respective
intervals within B, hence the resulting encoding has a stairs-like shape of the exe-
cution windows pri , prj from the subsequent entries (αr, Ir) within B, as illustrated
in Figure 4.12. We also note that it suffices to use a single clock to encode every
activation of uc(B, β1, β2), because due to its definition to only span the shortest
distance between the patterns β1 and β2, it is not possible to have two activations

69 4.1 Direct Encoding

Algorithm 5 encode(occ(β,HIα)) at occurrence pk
Require: k, xclock,Aenc, Ltarget, I = 〈v, w〉, Pb
Ensure: A′enc . Encoding of occ(β,HIα) at pk into Aenc

1: 〈i, j〉 ← calculateContext′(k, I, Pb)
2: orig_context← timelines(Aenc, i, j)
3: Asat ← copy(orig_context)
4: 〈i′, j′〉 ← calculateContext′(i, [w − v, w − v], Pb)
5: Aactive ← copy(timelines(Aenc, i

′, j), Ltarget)
6: A′enc ← Aenc ∪ Aactive ∪ Asat

7: addToIncTrans(A′enc, k, xclock = w, ∅)
8: addInvariants(A′enc,Asat,belowOrEqUB(xclock, I))
9: addInvariants(A′enc,timelines(A′enc, j + 1, k −

1),belowOrEqUB(xclock, I))
10: addCopyTrans(A′enc, orig_context,Aactive,>, {xclock})
11: addCopyTrans(A′enc,Aactive,Asat,aboveOrEqUB(xclock, I − v), ∅)
12: shiftOutgoingTrans(A′enc, j, orig_context,Asat)
13: return A′enc

Algorithm 6 encode(occ(β, α1SIα2)) at occurrence pk
Require: k, xclock,Aenc, Ltarget, I = 〈v, w〉, Pb
Ensure: A′enc . Encoding of occ(β, α1SIα2) at pk into Aenc

1: 〈i, j〉 ← calculateContext′(k, I, Pb)
2: orig_context← timelines(Aenc, i, j)
3: Asat ← copy(orig_context)
4: A′enc ← Aenc ∪ Asat

5: addToIncTrans(A′enc, k, satLB(xclock, I), ∅)
6: restrictStates(A′enc, orig_context, L1

target)
7: addInvariants(A′enc,Asat, satUB(xclock, I))
8: addInvariants(A′enc,timelines(A′enc, j + 1, k − 1), satUB(xclock, I))
9: addCopyTrans(A′enc, orig_context,Asat,>, {xclock}, L2

target)
10: addSuccTrans(A′enc, orig_context,Asat,>, {xclock}, L2

target)
11: shiftOutgoingTrans(A′enc, j, orig_context,Asat)
12: return A′enc

4 Plan Synthesis as Reachability Problem 70

pk−1

x < w

pk

x > v

pi pj

. . .

{x} {x}

x < w x < w. . .

.

pj+1

x < w

orig_context
Asat

restriction to L1
target

Figure 4.11: Encoding of occ(β, α1SIα2) for an interval I = (v, w) and a fresh clock
x at an activation pk. Prior to pk, bound by domain actions pi and
pk (orig_context) the interval I relative to the past of pk is located.
Hence α2 has to be visited (transitions from the states described by α2
within orig_context to Asat) which should be followed by a stay in
the states specified by α1 (Asat) until pk, at which point x is valuated
within I. Thick dashed edges indicate successor transitions.

(αm, Im) ∈ B

(αm−1, Im−1) ∈ B

(α4, I4) ∈ B

(α3, I3) ∈ B

(α2, I2) ∈ B

(α1, I1) ∈ B

pk−1 pk

x < w1

pi2

x < w1

x < w2

pj1

x < w1

x < w2

pi3

x < w2

x < w3

pi4

x < w2

x < w3

x < w4

pj2

x < w2

x < w3

x < w4

pl−1 pl

x < wm−1

x < wm

.

.

.

. . .

{x}

. . .

. . .

. . .

. . .

{x}
x > vm

x > v1 {x} x > v1 {x}

x > v2 {x} x > v2 {x} x > v2 {x}

x > v3 {x} x > v3 {x}

x > vm−1 {x}

Figure 4.12: Encoding of uc(B, β1, β2) for intervals Ir = (vr, wr) using a clock x
starting from pk and ranging to pl. B denotes a sequence of target
state sets Lrtarget that have to be visited for a duration Ir that lays
between actions pri and prj relative to the plan. Hence a stairway
pattern of transitions into subsequent target states is visited until pl
finally starts. Thick dashed edges indicate successor transitions.

of uc(B, β1, β2) that overlap. Let xclock denote the clock that we use for the re-
mainder of this section. For B = 〈(α1, I1), (α2, I2), . . . , (αm, Im)〉 and a pattern
from pk to pl matching β1 and β2 the procedure can be described as follows:

1. Reset xclock on the incoming transitions to the forks at the execution of pk.
2. Create m−1 copies Aruc, 1 < r ≤ m of the forks spanning from pk to pl−1 that

we denote by A1
uc. The context 〈ir, jr〉 that each copy has to cover within the

span to pk to pl−1 can be be calculated my accumulating over the intervals
that were covered so far, e.g., getting the context of ∑

t≤r
It relative to pk.

3. Restrict Aiuc to the target states described in αi.
4. Add copy and successor transitions to connect Aruc to Ar+1

uc for 1 ≤ r < m.
5. Constrain those transitions to require a valuation of xclock within Ir.

71 4.1 Direct Encoding

6. Move outgoing transitions of the timelines original forks at the execution of
pl−1 to the respective copies in Amuc and also adding successor transitions.
We note that if a run takes those successor transitions to reach pl, then
the resulting trace has to put the respective entry of the platform action
c at the time point ti after the entry of pl, so (pl, ti), (c, ti) ∈ δ. While
from a practical point of view the sequence (c, ti), (pl, ti) expresses the same
behavior, namely the concurrent start of c and pl, they are different in the
semantics of t-ESG as there is no notion of true concurrency. In particular,
the sequence (c, tl), (pl, tl) could violate γuc, if c causes a state change out
of the set specified in αm, such that state(M) as αmUIm does not hold at
(c, tl).

7. Restrict the transitions from Amsat to the forks at pl such that valuations of
xclock have to be within Im.

Now we are almost done with the formal description of all constraints, the only one
missing being occ(β, α), the constraint without any trace operator. However, it
only requires a single step to encode that states described by α should be reached
upon the start of actions specified in β: Restricting all incoming transitions of the
copies at the activation pk suffices.

Algorithm 7 encode(γuc) at occurrence pk followed by pl
Require: k, xclock,Aenc, 〈Lrtarget, Ir〉, 1 ≤ r ≤ m, Ir = 〈vr, wr〉, Pb
Ensure: A′enc . Encoding of γuc activation at pk followed by pl into Aenc

1: Iacc ← I1
2: for all r ∈ {2, . . . ,m} do
3: Iacc ← Iacc + Ir
4: 〈ir, jr〉 ← calculateContext(k, Iacc, Pb)
5: Aruc ← copy(timelines(Aenc, ir, jr), Lrtarget)
6: end for
7: 〈i1, j1〉 ← calculateContext(k, I1, Pb)
8: A1

uc ← timelines(Aenc, k, l − 1)
9: A′enc ← Aenc ∪

⋃
1<r≤m

Aruc
10: addToIncTrans(A′enc, k,>, {xclock})
11: addToIncTrans(A′enc, l, satLB(xclock, Im), ∅)
12: for all r ∈ {1, . . . ,m− 1} do
13: addInvariants(A′enc,Aruc, satUB(xclock, Ir))
14: addCopyTrans(A′enc,Aruc,Ar+1

uc , satLB(xclock, Ir), {xclock}, Lr+1
target)

15: addSuccTrans(A′enc,Aruc,Ar+1
uc , satLB(xclock, Ir), {xclock}, Lr+1

target)
16: end for
17: addSuccTrans(A′enc,Amuc,timelines(A′enc, l, l), satLB(xclock, Im), ∅)
18: shiftOutgoingTrans(A′enc, l − 1,A1

uc,Amuc)
19: restrictStates(A′enc,A1

uc, L
1
target)

20: addInvariants(A′enc,Amuc, satUB(xclock, Im))
21: return A′enc

4 Plan Synthesis as Reachability Problem 72

4.1.8 Merging Encodings of Different Models

The procedures so far only deal with a single platform component at a time, in
the following we will address the general case of multiple componentsM1, . . . ,Mn

that all have to be operated.

Direct Merge of Individual Transformed Plans As a starting point, let us con-
sider what happens when we treat the control of the different Mi as separate
problems, e.g., create n transformed plans δ1, . . . , δn that have to be unified in the
end. This approach works well, if all plans agree on the start times of high-level
actions: As described in Section 3.3 the different platform actions do not interfere
with each other and since the different plans agree on the domain action start times
we may simply unify the plans. This can be achieved by sorting the entries across
δ1, . . . , δn based on the grounded execution times and then removing the duplicate
entries for domain actions. Such a combined plan respects the constraints that
every δi individually satisfies towards the operation ofMi. However, issues arise
once different plans determine different timings for high-level actions.

As an example let us return to the perception unitMvis of Figure 2.1 to operate
a camera with the same constraints as presented in Section 4.1.1. Let another
component Mcalib be responsible for calibrating the gripper after every every
30 seconds that the gripper is moving. For simplicity we assume the gripper to
be moving for precisely the whole duration of a pick or put action that each
take exactly 10 seconds to execute. In other words, after every third grasping
task, the axis have to be re-calibrated, while the perception may be operational
for up to three consecutive executions of grasping actions as well, given that the
perception can be in state running for at most 30 seconds. Let the re-calibration
procedure take 15 seconds and now consider the following high-level plan consisting
of 6 consecutive grasping tasks modeled through durative actions with an upper
bound on end actions of 20 seconds to allow platform interactions in between
domain actions and an extra action start to allow platform control before the
first action:

start(),start_pick(~a), end_pick(~a), start_put(~a), end_put(~a),
start_pick(~b), end_pick(~b), start_put(~b), end_put(~b),
start_pick(~c), end_pick(~c), start_put(~c), end_put(~c)

A transformation to incorporate Mvis could turn on the perception at time 0,
have it running at 2, proceed with the first three grasping tasks without delay,
restart the perception at 32 right after the second put action is finished, have it
running again by 34 to proceed with the remaining three grasping tasks leading
to a total time of 64 seconds.

ConsideringMcalib instead, a transformed plan may start the first three grasping
tasks right away, re-calibrate the gripper at 30 during the second end_pick and
then continue the remaining domain actions at 45 to a total of 75 seconds.

73 4.1 Direct Encoding

A combination of those two plans is not possible without further adaptions, con-
sidering that during the time that the gripper calibrates, the camera continues to
run unless it is explicitly turned off. The underlying problem is caused by the
possibility to control the start of high-level actions that both plan transformations
utilize differently causing incompatibilities.

Hierachical Ordering of Encodings One solution to fix the problem of disagree-
ing domain action timings could be to distinguish between components that do
not need any control over high-level timings because they run strictly in parallel
to any domain task and those actions that may interfere with the high-level tim-
ings. Then one could try to first obtain an encoding of the latter components that
dictate the timings of domain actions when transforming the plan with respect to
the former type of low-level specifics in a second step.

Combining Different Encodings This gives no solution in the above scenario,
where multiple components have to influence the domain action timings. One ap-
proach is to merge those components together via a product automata construction
[4] and then encode their respective constraints together into one automaton. We
follow this idea, but instead of merging the initial components we first construct
the encoding automataAvis

enc andAcalib
enc separately and then merging them together

afterwards.

The approach of merging late has two benefits: Firstly, it naturally produces the
separate encodings as intermediate step, which may be used to validate that there
are individual solutions to the constraints of the different models, e.g., by checking
if the designated state fin is reachable in each of the encodings, which at least
ensures that there are no constraints formulated for any component that form a
contradiction already. Secondly, while the resulting automaton is identical, we
believe it is beneficial to combine the encodings instead of the platform models to
avoid unnecessary memory consumption, e.g., caused by first encoding constraints
that introduce many possibilities and then incorporating constraints that restrict
the available states.

We proceed to sketch the procedure of merging two encodings A1
enc and A2

enc
together. In case of more than two platforms the given algorithm can be re-applied
to merge the encodings one-by-one.

As a first step we note that during the execution of each individual domain action
pi the different platforms are operating completely independent from each other.
Therefore, we can simply take the sub-automata A1

enc|pi
and A2

enc|pi
at each pi,

merge them by replacing each state of A1
enc|pi

by a copy of the automaton A2
enc|pi

and then connect the copies via copy transitions annotated according to the tran-
sitions within A1

enc|pi
. This essentially corresponds to the technique of merging

together platform and plan automaton in Section 4.1.1. The states of the resulting
automata A1,2

enc|pi
are effectively tuples 〈l1enc, l

2
enc〉 with one state from A1

enc and one

4 Plan Synthesis as Reachability Problem 74

from A2
enc, each. The remaining task is to connect the sub-automata at pi with

the ones at pi+1 (or with fin in the case of i = n). Given 〈l1enc, l
2
enc〉 ∈ A1,2

enc|pi

and 〈l̂1enc, l̂
2
enc〉 ∈ A1,2

enc|pi+1
a transition 〈l1enc, l

2
enc〉

g∧ĝ,a+â,r∪r̂−−−−−−−→ 〈l̂1enc, l̂
2
enc〉 is added,

only if l1enc
g,a,r−−→ l̂1enc is a transition in A1

enc and l2enc
ĝ,â,r̂−−→ l̂2enc is contained inA2

enc,
modeling that an execution of a domain action is only started, if the constraints
of both platforms allow it.

4.2 Modular Encoding Using Communication
Between Automata

The encoding procedure presented above resembles our initial approach to tackle
the problem of unifying the concerns from different entities that all use different
formalisms. Initial benchmarks were promising, hence we followed the track fur-
ther. However, the practical problems arising from the handling of huge automata
as required from the presented direct encoding are manifold: Complex datastruc-
tures are necessary to keep track of all the created copies, each created state has
to get a unique name that has to carry all necessary information, leading to re-
sulting automata that are hard to interpret for the human eye and contribute to
the generally difficult task of debugging and modifying the resulting system. The
initial draft was essentially a brute-force unfolding of all the possible options to
transform a plan.

Driven by the preliminary results and discouraged from the unsophisticated na-
ture of the approach to generate encodings, we experimented with extensions of
the classical timed automata formalism to help with our goal towards a plan trans-
formation that is both fast and elegant, such that handling and implementation
becomes less cumbersome. Given that our starting point consists of three separate
entities, namely the high-level plan, the automata for the low-level specifics and
the connective constraints to specify their relations, we tried to keep those concerns
separated and establish the necessary connections with the help of synchronization
between different automata.

The first entity, the platform model, is already given as timed automata AM, a
high-level plan can be represented as timed automaton AP as well, using the same
construction as in Section 4.1. We proceed to also construct automata Aγ for the
constraints, and then utilize synchronization channels as provided by UPPAAL to
establish links between AM and P through Aγ. The basic idea for this is inspired
by the observation, that the operational patterns that a constraint γ imposes on
a componentM can be represented using a construction with only few copies of
AM, such as the ones from Figure 4.2. In fact, let us revisit the previous example

75 4.2 Modular Encoding Using Communication Between Automata

of

γprep :=occ(Occ(pick(o, p)) ∨Occ(put(o, p)),H(0,2](state(Mvis) = warm-up
∨ state(Mvis) = running))

to showcase the construction of an automaton Aprep that just encodes the behavior
of remaining in the target states of γprep at some point and that we may link to
AP by means of synchronization afterwards.

Encoding Platform Behavior Separately Remembering the procedure from the
direct encoding approach, the basic idea to tackle γprep was to differentiate between
four different situations relative to an activation at a domain action ai within a
high-level plan:

(1) Initially,M may be controlled freely.
(2) At some point before ai, encoded through a non-deterministic choice of a

transition to another copy, the right time in advance of ai is assumed. In
case of γprep this time is exactly two seconds before ai. Thereby, a clock
is reset that counts the time towards the start of ai and the platform is
restricted to the target states specified by γ.

(3) After γprep is satisfied and before ai is started, the component may be used
freely again. In this example the free usage merely equates to changing states
within AM without any time elapsing.

(4) As soon as ai is started, free control is established again. In fact, we effec-
tively end up in (1) again, waiting for the next activation at a later plan
action.

Using the idea of Figure 4.2b and remembering the usage of a clock to non-
deterministically guess the right time in advance of ai we can come up with the
automaton in 4.13 that conveys the idea of the above four situations: Aidle models
the unconstrained control overM while waiting for the next activation. Once the
time has come, Aactive restricts M to the target states of γprep for two seconds,
then γsat deals with the remaining control before ai starts, which should allow a
move to Aidle again. Those transitions back are annotated with a synchroniza-
tion label. Let us summarize the basic concepts of synchronization as provided by
UPPAAL:
Multiple automata together form a system. If one automaton emits a broadcast
or direct message via a channel by taking a transition with an attached emitting
channel, then other automata in the system that could take a transition labeled
as receiver of the broadcast are required to do so. Hence multiple automata take
transitions at the exact same time via a defined master-slave relation. Broadcasts
can always emitted, even if no other automaton receives them, binary channels are
required to be received.

4 Plan Synthesis as Reachability Problem 76

Back towards our example, AP may emit a broadcast upon the start of grasping
actions, such that Aprep (and possibly other constraints that require knowledge
about grasping actions) may receive to determine the timing to move from the
copy Asat to Aidle. However, there is a major flaw with the depicted automaton:

Aidle Aactive Asat

power-off

warm-up running

power-off

warm-up runningwarm-up
xstay ≤ 2

running
xstay ≤ 2

xstay ≤ 2

xstay ≤ 2 xstay ≤ 2

{xstay} {xstay} xstay ≥ 2 xstay ≥ 2

sync-grasp

sync-grasp

sync-grasp

Figure 4.13: Encoding γprep as separate automaton.

There is no requirement to ever leave Aidle. As emitting broadcasts do not have to
be received, Aprep miss the broadcast by stayin in Aidle. Binary channels are not
an option as generally other constraint encodings may require the receiving of the
message from AP as well. We can circumvent this issue by introducing a trap state
that models the failure of any run, where Aprep misses the receive of a grasping
start sent from AP . All states from Aidle and Aactive are connected to said trap
via transitions that are taken once AP emits the broadcast. In other words, Aprep

has to avoid the move into the trap, which is only possible by actually being in
the copy Asat at the right time.

Synchronized Platform Behavior Now that we get a grasp on the connection
between the plan automaton and separately modeled constraint automata, we may
tackle the next problem, which arises, if multiple constraints have to be encoded
and they are modeled as different automata Ai, i > 1. Then they all have to agree
on the state ofM at any given time, which we again may achieve via broadcasts:

Communication in UPPAAL is one-sided, flowing from sender to the receivers, hence
we essentially have to model one master, that controlsM, while all automata that
model concrete behavior ofM, e.g., the automaton Aprep, mirror the moves of that
master. We can simply take a single copy of AM that emits broadcasts on every
single transition as such a master, but the possibility to miss emitted broadcasts
has to be handled in the receiving automata yet again, e.g., while Aprep is in the
copy Aactive it could miss an emitted broadcast to move to power-off. The trap
state can again be used for that matter. We depict the resulting interactions be-
tween a master automaton Amaster, Aprep and a plan automaton AP schematically
in Figure 4.14.

The Induced Model Checking Problem To obtain an executable plan from
such a system of automata, we can query for paths that reach fin in AP , and

77 4.2 Modular Encoding Using Communication Between Automata

power-off

warm-up running

power-off

warm-up running

power-off

warm-up running

AP

start

pick

put

fin

...

...

...

Amaster

runningwarm-up

Aprep
idle

Aprep
active

Aprep
sat

Figure 4.14: Aprep,AP and Amaster as separate entities connected via communica-
tion channels (dashed lines). The trap state is not depicted.

where no constraint automaton ends up in a trap states. Preliminary tests yielded
surprisingly bad results, on instances with only five synchronized automata and
a plan of length 10 it already took over a minute in order to come up with a
solution. We at first assumed the cause to be the used tool, as the usage of
broadcast channels does not really fits our needs. However, similar tests using
Kronos, a tool that models blocking communication, which is exactly what we
need, were not promising either. We assume the real underlying problem to be
the lack of explicitly encoded information, such as the order in which constraints
have to be satisfied and the temporal relations between multiple activations of a
constraint that may be deducible from the constraints between domain actions.
While the approach presented here would be significantly easier to implement
and also provides an elegant and compact encoding of the plan transformation,
it ultimately is not suited to tackle the task as the objectives and constraints are
obfuscated through the implicit dependencies of the different automata across the
system.

78

5 Synthesizing Executable Plans
Returning to our overall objective to obtain a transformed plan through an solv-
ing a model checking problem of timed automata, we are now equipped with the
knowledge to actually compose a reachability task that entails the possible trans-
formed plans. However, we have yet to address the question of how to actually
synthesize solution plans from a given encoding of platform model constraints Aenc

as described in 4.1. The reachability task to find a path to the designated state
fin corresponds to the problem of determining an executable plan that respects
the platform specifics. The next step is to utilize a model checking tool, here we
side with UPPAAL, in order to generate such a solution.

UPPAAL can answer successful reeachability queries by returning a symbolic trace
through the automata system, where each symbolic state is given through a min-
imal difference constraint system from which the DBM of the symbolic state may
be computed. Our prototype implementation invokes UPPAAL’s command line
tool verifyta that can produce traces that are both pre- and post-stable (see
Definition 2.1.5 and Definition 2.1.6). Given such a trace T = 〈l1, D1〉

g1,a1,r1
〈l2, D2〉

g2,a2,r2 . . .
gN ,aN ,rN 〈lN , DN〉 we have to extract one of the possibly in-

finitely many concrete traces that are described symbolically by T and that each
represent the same transformed plan (given through the action labels on T) with
different execution times that all satisfy the encoded constraints. In general, gen-
erating concrete traces from a symbolic trace T of an automaton A equates to
determining the time points t1, . . . , tN , at which each transition within T is taken,
such that, given the initial clock assignment µ0 where all clocks are 0, the path

〈l1, µ0〉
t1−→ 〈l1, µ0 + d〉 a1−→ 〈, l2, µ1〉

t2−→ 〈l2, µ1 + t1〉
a2−→ . . .

tN−→ 〈lN , µN〉

is contained in T(A), the semantic transition system of A.

Determining a Concrete Trace We are particularly interested in the fastest
possible run through Aenc to obtain a time optimal plan with respect to the plat-
form constraint. Such a run can be obtained by instructing verifyta to produce
the fastest symbolic trace reaching fin, which in turn also contains the fastest
concrete trace. In general there is no unique fastest concrete trace within given
symbolic trace, e.g., if a platform action has to be invoked somewhere during some
high-level action a without further constraints, then any timing on the platform
action within the execution of a may be valid to form a concrete trace without
interfering with the total time elapsing. We consider the concrete trace with the
lowest overall elapsing time that triggers all actions as early as possible to be a
canonical representation of a fastest trace to avoid ambiguity.

However, it is not always possible to actually determine optimal concrete timings
for each transition of a given symbolic trace T , as we illustrate by considering the

79

example in Figure 5.1. The fastest concrete trace reaching fin would transition
to l2 at 15, and then move to l3 past 20. However, it is impossible to determine a
concrete optimal timing as any valuation of x within (5, 10) suffices for a valid trace
and since clocks carry values from the domain R we can only provide arbitrary
close approximations for the fastest trace. While we could argue that real-world
executions act upon a minimal observable time delta, which could be used to give
the closest approximation that is practically feasible, it does not appear to be
reasonable that the actual commands that invoke the activation are controllable
up to the smallest measurable precision.

l1 l2 l3 fin
x = 15
{x}

x > 5
{x}

x = 90
{x}

Figure 5.1: Automaton that induces no concrete fastest run towards fin.

Returning to our application, we believe that in cases where due to a strict lower
bound on the fastest possible execution time no best solution can be given, the
decision to find the exact grounding should be made within the high-level execution
to start the respective action at the fastest time that is practically feasible, instead
of arbitrarily choosing some time within the plan transformation procedure. We
extend this line of thought and aim to always provide a range instead of a fixed
grounded value for each execution timing, such that the high-level framework may
be operated with some robustness towards unforeseen events that prolong or delay
certain execution times.

Re-Grounding Execution Times In order to grant an executor the power to
choose concrete timings, another issue has to be tackled first: The possible execu-
tion time for the i-th transition of a symbolic trace T of length N ≥ i may depend
on the concrete execution times of all previously taken transitions.

Let us look at the automaton in Figure 5.2 and consider the possible traces reaching
fin. Assuming l3 is reached without any time elapsing, then the executor has to
wait [2, 3] seconds before executing a3 and therefore reaching l4. If on the other
hand some delay of two seconds happens at l2, then the time to wait in l3 changes
to [0, 1] seconds in order to still reach fin. As a consequence, we propose to

l1 l2 l3 l4 fin
{x1}
a1 a2 a3

{x2}

x1 − x2 ≥ 2
∧x1 − x2 ≤ 3

Figure 5.2: Automaton where the delays influence later possible wait times.

take the earliest feasible execution time of each transition in a symbolic trace T
as lower bound and provide the biggest allowed delay assuming that all previous
transitions were taken at their respective lower bounds as upper bound. Then,

5 Synthesizing Executable Plans 80

whenever an action is executed later, either due to the provided lower bound
being strict or due to some other circumstances that result in some delay, the
remaining execution intervals have to be recalculated. We proceed to give details
on the procedures to calculate execution start intervals and to recalculate those
intervals upon encountering a delay.

5.1 Calculating Execution Start Intervals

Given a symbolic trace T of length N regarding a run through an automaton A
with clocks C, the calculation of start intervals evolves around the idea to propagate
the lower bound on the current execution time while simultaneously tracking the
values of clocks within C through the possible executions of T .

To that end, we utilize an extra clock G that is added to the automata system
and is never reset. Therefore, it always refers to the current execution time and
we can retrieve all possible values within a symbolic state 〈li, Di〉 of T Di by
checking the difference bounds of G and cl0 in the closed form cf(Di) of Di (see
Definition 2.1.7). In particular, the entry corresponding to G − cl0 corresponds to
the upper bound while the entry of cl0 − G yields the negated lower bound.

Bøgsted Poulsen and van Vliet [24] show that it is indeed enough to look at the
lower bounds of G along with the guards on the transitions that are taken within T
to obtain a representation of the fastest concrete trace within a given post-stable
trace T . Since in our case traces are also pre-stable we may only consider the DBMs
of the symbolic states without including the constraints on clock transitions. The
following theorem gives an intuition for this.

Theorem 5.1.1. Let 〈ili, ui〉i, 0 ≤ i ≤ N be the lower bound on the special clock
in a forward and backward stable trace where no symbolic state imposes a strict
lower bound on G, then l̂i := li, 0 ≤ i ≤ N implies a concrete trace τ(l̂i).

Proof. By induction, claim: In step n a concrete state within Dn is reached.

Anchor n = 0: initially all clocks are 0. Therefore, it is a concrete state within
D0.

Step n 7→ n+ 1: Assume that l̂n+1 is not contained in Dn+1. By induction τ(l̂n) is
contained in Dn. Since T is post-stable there has to be a delay d > ln+1 − ln that
reaches a state in in Dn+1 from τ(l̂n) and the reason why delaying by ln+1 − ln
is not working as delay must be due to some clock constraint enforcing a lower
bound on a clock values. Other type of clock constraints (difference constraints
and upper bounds) cannot be satisfied by simply waiting longer. Note that we
assumed our guards do not contain disjunctions of clock constraints in Section 2.1
which reflects the restrictions of UPPAAL, so indeed a single lower bound constraint
γ may be isolated as reason why ln+1 does not induce a symbolic state in Dn+1.

81 5.2 Recalculating Action Start Times

Since l̂n+1 is a possible clock value in Dn+1 and T is backwards stable it follows
that there has to be some concrete trace oi, 0 ≤ i ≤ n such that the special clock
has value l̂n+1 in on+1 and that is different from (τ(l̂i))0≤i≤n. Since (τ(l̂i))0≤i≤n

delayed only when absolutely necessary (as late and short as possible) up to τ(l̂n)
all clocks were reset as late as possible. It follows that all clocks in τ(l̂n) have a
value that is smaller or equal to the value in the predecessor state of on+1. This is
contradicting to the concrete trace of τ(ln)|d not satisfying γ while the predecessor
state of on+1 did satisfy γ despite having a clock value on the mentioned clock in
γ that is not bigger than the respective value in τ(ln)|d.

So by contradiction l̂n+1 is contained in Dn+1 which concludes the induction.

Similar to [24] one can argue that in case there is indeed a strict lower bound on G
a sufficiently small ε can be picked to obtain a concrete trace. This is not relevant
for our use case as the concrete timing is determined during plan execution and
therefore it suffices to return the strict bound instead.

The pseudo code to obtain execution start intervals is shown in Algorithm 8. For
each transition of the symbolic trace (line 6) one can compute the lower bound on
G in the destination state to obtain the required delay from the source state (line
7). This, together with the resets on the given transition, is used to simulate the
progression of each clock (lines 8-13). With those concrete values we can update
the destination state DBM to include lower bounds on each clock and calculate
the maximum delay based on the smallest interval length that any clock value is
restrained to (lines 14-18).

5.2 Recalculating Action Start Times

Algorithm 8 bases its calculation on the assumption that actions are started as
early as possible (line 9, line 16). Whenever this is not the case during plan
execution, we have to recalculate the remaining start intervals. For this we can
simply treat the trace as timed automaton and add lower bound guards of G to
the already performed transitions encoding the time that they took (including the
occurred delay). Checking this automaton for a path that reaches the last trace
state we obtain a fresh pre- and post-stable trace and apply Algorithm 8 again to
get updated timings.

5 Synthesizing Executable Plans 82

Algorithm 8 Calculate Execution Start Intervals
Require: T = D0 →1 D1 →2 . . .→n Dn, clocks . Di are DBMs , clocks is a set

of all clock names
Ensure: L0, U0, . . . , Ln, Un . lower bounds to visit symbolic states and upper

bounds on the duration of each visit
1: for all c in clocks do
2: cl_val[c]← (0,≤)
3: end for
4: L0 ← getLowerBound(D0)
5: U0 ← getMaxDelay(D0)
6: for all Di−1

gi,ri−−→i Di in T do
7: Li ← getLowerBound(Di) . determine next G value
8: for all c in clocks do . progress clocks
9: cl_val[c]← cl_val[c] + getDurationLowerBound(Li, Li−1)

10: end for
11: for all c in ri do . reset clocks
12: cl_val[c]← (0,≤)
13: end for
14: Φ← TRUE
15: for all c in clocks do . create lower bound constraint for clock values
16: Φ← Φ ∧ toLowerBound(c, c_val[c])
17: end for
18: Ui ← getMaxDelay(Di ∧ Φ)
19: end for

83

6 Evaluation
We consider tasks from the RoboCup Logistics League (RCLL)[61, 30], which is part
of the RoboCup [49], an international competition for academia and industry. The
task of the league is to produce orders that arrive online by transporting workpieces
to different stationary production lines. Orders consists of different pieces, namely
as a base element, zero to three rings mounted on top of the base and a cap.
Different MPS stations have to perform the required steps. Therefore, the basic
task of autonomous robots in that domain is to pick up intermediate products
from one station and deliver them to another station. Robots from different teams
play on the same field and at the same time. Core requirements for a suitable
robot are

• Precise gripping
• Sensors to detect machines and align to them
• Communication with machines to instruct them, communication with a ref-

eree box (a software program that administers the game, see [62])
• Navigation and localization in a dynamic environment

6.1 Benchmark Domain

We apply the plan transformation to randomly generated plans that represent
possible production sequences of orders in a simplified RCLL setting, that is sum-
marized in the following:

A basic production sequence is dependent on the number of rings and modeled
through: If zero rings are required then a fixed sequence is generated via:

1. Preparing one of the two cap stations (randomly picked) by picking material
from its’ shelf and feeding it into the machine. We call this a buffer step.

〈goto(s,CS1), get-shelf(o,CS1), put(o,CS1))〉

2. Retrieving the residue product from that cap station and dispose it into one
of the two ring stations (randomly picked), also denoted as a clean-up step.

〈goto(s,CS1), pick(o,CS1), goto(CS1,RS2), pay(o,RS2))〉

3. Transporting a base from the base station to the prepared cap station, such
that the machine can mount the cap, also referenced as a mount-cap step.

〈goto(s,BS), pick(o,BS), goto(BS,CS1), put(o,CS1))〉

6 Evaluation 84

4. Delivering the finished product to the delivery station in the deliver step.

〈goto(s,CS1), pick(o,CS1), goto(CS1,BS), put(o,BS))〉

If rings have to be mounted before adding the cap, then partially ordered steps have
to be applied, the sequence is determined by chance. Atomic steps are assumed
to be:

1. A buffer step followed later by a clean-up step, which then enables a mount-
cap step that takes a product that has all rings assembled from its current
position to the buffered and cleaned-up cap station and is concluded after-
wards by a deliver step.

2. Payment steps that require to bring a product, either from the base station
or one of the cap station’s shelves (randomly picked) to the cap station as
payment.

〈goto(s,CS2), get-shelf(o,CS2), goto(CS2,RS1), pay(o,RS1))〉

3. Mount-ring steps that get a workpiece from the base station (in case the first
ring has to be mounted) or from its current position (if the second or third
ring has to be mounted) and bring it to one of the two ring stations (prede-
termined for each ring by chance) only after the required payment of zero to
three workpieces (the required payment is also randomized beforehand) was
provided. It is possible that a product requires multiple rings from the same
station in the row. Then the product has to be picked up again and freshly
placed on the machine in order to trigger the next mounting step.

〈goto(s,RS1), pick(o,RS1), goto(RS1,RS2), put(o,RS2))〉

This allows for multiple possible orderings of steps to assemble products, e.g., there
are 33 reasonable sequences for producing an order requiring a cap from the first
cap station and a ring with cost 1 from the second ring station.

The randomized plan generation provides us with the means to test our proposed
plan transformation on plans of different sizes and forms and that contain the
following actions:

• pick(o,m) to pick an object o from a machine m.
• get-shelf(o,m) to pick an object o from the shelf of a cap station m.
• pay(o,m) to put an object o into the payment slide of a ring station m.
• put(o,m) to put an object o into a machine m.
• goto(m,m′) to move from a machine m to m′.

We model those actions to be durative, so every action is actually split into a start
and end action, we also add designated plan-start and plan-end actions as first

85 6.2 Platform Models

and last entry of each plan, which will become handy, when modeling platform
constraints. For convenience we establish the following notions:

Astart
pick (o,m) :={start_pick(o,m), start_get-shelf(o,m)}

Astart
put (o,m) :={start_put(o,m), start_pay(o,m)}

Astart
grasp(o,m) :=Astart

pick (o,m) ∪ Astart
put (o,m)

Analogously, we define the corresponding sets for end actions.

6.1.1 High-Level Temporal Constraints

It remains to formalize the temporal relations for each of the generated plans.
Given a plan P = 〈a1 = plan-start, a2, . . . , an = plan-end〉 we define:

• rel(1, 2, [0, 0]) , so the plan-start consumes no time.
• rel(k, k+ 1, [15, 20]), if k mod 2 = 0 and the k-th action is a(o,m) ∈ Astart

grasp.
This constrains the duration of grasping tasks to be within [15, 20] as we
assume strictly sequential domain actions, such that each start action is
directly followed by its’ respective end action.

• rel(k, k + 1, [30, 45]), if k mod 2 = 0 and the k-th action is start_goto.
• rel(k, k + 1, [0, 30]), if k mod 2 = 1 (the k-th action is a end action)
• abs(1, [0, 30]), such that the abstract plan starts to get executed at most 30

seconds after the begin of the transformed plan.
• abs(k, I) for k > 1 can be deduced from the given relative constraints.

6.2 Platform Models

We evaluate the proposed plan transformation procedure by considering robots
with a gripper consisting of x, y, z axis, a perception unit based of data from a
depth camera, and communication interfaces to instruct machines as well as to
report the current position as needed. The presented use cases are inspired by
discussions about improvements to the reasoning system of the RoboCup team
Carologistics.

6.2.1 Perception Unit

The perception unitMperc is modeled by the automaton AMperc depicted in Fig-
ure 6.1. It models four different concerns: Firstly, the control of the camera, which
should be powered off when not needed. The second responsibility is to trigger
the detection of the conveyor belts on each machine, such that the gripper can be

6 Evaluation 86

aligned precisely. This requires to perform an iterative procedure of point-cloud
matching based in ICP, which takes between 10 to 15 seconds based on the quality
of data and therefore determines the actual duration of each grasping task. An-
other task of Mperc is to upload a picture from the camera after the successful
alignment to the machines. The alignment is done after the point-cloud match-
ing is established and takes at most 5 seconds, hence pictures have to be taken
afterwards. Said pictures are useful to provide training data in order to evaluate
the quality of the alignment through a neural network. Lastly, a infrared sensor is
attached to the gripper in order to monitor the results of grasping tasks by sensing
whether objects are currently being held or not. However, since the depth camera
interferes with the quality of the infrared sensor, the camera has to be turned off
in order to obtain reliable results. Moreover, the camera keeps interfering with
the sensor for a short period of time after it has already been turned off, as the
internal hardware keeps the depth stream running for a while. To account for this,
the puck sense has to wait an additional two seconds after the camera has been
shut off.

The expected benefits from using a plan transformation as opposed to abstracting
the hard-ware control in low-level procedures unaware of the high-level context are
manifold: On the one hand it allows to make the decision to turn-off the camera
based on future usage, e.g, the camera should stay powered across sequences of
pick and put actions. It also admits fine-grained control over the puck sensor,
by defining its usage only as need, e.g., if grasping tasks perform robustly, during
movements the sensor data becomes noisy and there is a chance to lose a product
while driving, a puck check could be demanded after each goto that follows a
pick. Lastly,Mperc also demonstrates the power to model the temporal relations
between execution time and uncertain low-level behavior, as we will show later.

cam-off boot
xcam ≤ 6

cam-on

start-icp
xicp ≤ 10

end-icp
xicp ≤ 1

take-pic
xcam ≤ 1

puck-check
xcam ≤ 1

{xcam, xicp}
turn-on

{xcam, xicp}

xcam ≥ 4
no-op

{xcam, xicp}
turn-off

{xicp}
icp-start

{xicp}

xicp ≥ 5
publish

no-op
{xicp}

xicp ≥ 5
save-pic
{xcam, xicp}
upload

xcam ≥ 2
check-puck
{xcam, xicp}

Figure 6.1: Automaton AMperc to refine grasping actions.

87 6.2 Platform Models

6.2.2 Axis Calibration

A second modelMcalib takes care of maintaining the precision of the axis move-
ments that align the gripper. The precision of the axis movements degrades
over time, which is modeled by a cycle of at most two axis alignments before
re-calibration becomes necessary, which takes 20 seconds and consists of moving
each axis to one of their endpoints. The automaton to model this hardware control
is depicted in Figure 6.2.

A plan transformation may enable to effectively schedule the calibration as needed
and under considerations of safety concerns, such as avoiding calibrations when a
workpiece is currently being held as it induces a risk of losing the held object in
the process.

precise usage1

semi-precice

usage2uncalibrated

calibrate
xcalib ≤ 20

no-op

no-op

no-op
{xcalib}
calibrate

no-op

{xcalib}
calibrate

xcalib = 20
no-op

Figure 6.2: Automaton AMcalib to control axis calibration.

6.2.3 Communication Interfaces

Figure 6.3 shows the automaton AMcomm of a model Mcomm to handle machine in-
structions. Under the assumption that robots only bring a workpiece to a machine,
if the intended assembly step can be performed, the machine instructions may be
decoupled from the domain by instructing a machine after a product has been
delivered to the machine and before it is retrieved. In order to evaluate the scaling
of our approach with growing number of platform models, we will consider four
copies AMcomm1 ,AMcomm2 ,AMcomm3 and AMcomm4 of the presented automaton to account
for communication with the two cap stations and the ring stations.

We believe that such an abstraction could significantly simplify the abstract do-
main, as it permits a very high-level view on machine interactions.

6 Evaluation 88

idle prepare
xcomm ≤ 30

prepared
xcomm ≤ 0

instruct-machine
{xcomm}

xcomm ≥ 30
no-op
{xcomm}

acknowledge

Figure 6.3: Automaton AMcomm to prepare machines.

6.3 Platform Constraints

The final prerequisites are the constraints to define the usage of platforms in the
context of the given domain plans. We essentially formalize the utility of the four
different models with the help of the formulas from Section 4. In order to establish
a concise notion, the following abbreviations are used:

• φloc := state(M) = loc, the platformM can be derived from the context in
which φloc appears.

• ψact(~x) := Occ(act(~x))..
• Ψstart

grasp(~x) := ∨
act∈Astart

grasp

Occ(act(~x)) and similarly for the other sets defined in

Section 6.1.1.
• Φtarget := ∨

loc∈Ltarget

αloc for a set of platform states Ltarget and using L> to

denote all states ofM.
• I> := [0,∞)

Let us start with the constraints for Mperc of Figure 6.1. Using Lno-icp :=
L> \ {start-icp, end-icp} and Lno-cam := {cam-off, puck-check}, we constrain
Mperc as follows:

γ1
perc :=uc

[
〈(φicp-start, I>), (φicp-end, [0, 0]), (Φno-icp, [10, 10])〉,Ψstart

grasp(o,m),

Ψend
grasp(o,m)

]
γ2

perc :=uc
[
〈(Φ>, I>), (φtake-pic, I>), (Φ>, I>)〉,Ψstart

grasp(o,m),Ψend
grasp(o,m)

]
γ3

perc :=uc
[
〈(Φno-cam, I>)〉, ψstart_goto(m,m′), ψend_goto(m,m′)

]
γ4

perc :=occ
[
ψstart_goto(m,m′), φtake_pic

]
γ5

perc :=occ
[
ψend_goto(m,m′), φtake_pic

]
γ1

perc states that the ICP procedure should start directly when starting a grasping
task and afterwards constraintsMperc to not invoke ICP again. It also implicitly
specifies the run-time of the belonging high-level action: When said action starts,
Mperc is forced to move to end-icp [5, 10] seconds afterwards due to the modeling

89 6.3 Platform Constraints

of AMperc . Afterwards it permits a duration of exactly 10 seconds before the grasp-
ing action has be done. Hence this refinement connects the operation window of
grasping tasks given in Section 6.1.1 with the underlying hardware-specific reason.
This design was also chosen to demonstrate how careful platform designers have to
be when utilizing until-chain constraints, since implications through the structure
of the platform automaton and the composed chain can easily impose restrictions
on the time interval between two domain actions. γ2

perc operates on the same ac-
tive window as γ1

perc by demanding the perception unit to upload a picture during
each grasping task. Lastly, γ3

perc, γ
4
perc and γ5

perc manage the control during goto,
by requiring that the camera should be turned off and the puck sensor should be
checked when goto starts and ends.

TowardsMcalib we first define Luse := {usage1, usage2}, Lno-use := L> \Luse and
Lno-calib := L> \ {calibrate}, such that we can proceed to define the following
constraints:

γ1
calib :=uc

[
〈(Φno-use, I>)〉, ψstart_goto(m,m′), ψend_goto(m,m′)

]
γ2

calib :=uc
[
〈(Φno-calib, I>)〉,Ψend

pick(o,m), ψstart_put(o,m)
]

γ3
calib :=uc

[
〈(Φ>, I>), (φprecice, I>), (Φ>, [0, 0])〉,Ψend

pick(o,m), ψend_pay(o,m)
]

γ4
calib :=uc

[
〈(Φuse, I>)〉,Ψstart

grasp(o,m),Ψend
grasp(o,m)

]

γ1
calib ensures that the states that model axis usage are not visited during goto.

Since Mcalib does not invoke any actual platform actions upon entering those
states, γcalib is not necessary from a modeling perspective. However, the per-
formance of the encoding may benefit from having said constraint, because the
resulting encodin removes unnecessary branching possibilities.
The next two constraints γ2

calib and γ3
calib are used to represent context-based cali-

bration: The former states, that the axis should not be calibrated, while an object
is being held that gets placed on a machines’ conveyor belt. This may be benefi-
cial, because on the one hand, axis movement through calibration may come with
a small chance of a product getting dropped by accident, on the other hand it also
means that there is no time consuming calibration while an important workpiece
is hold, which again may also increase the risk of losing a workpiece due to exter-
nal reasons. γ3

calib practically enforces the opposite behavior if the held workpiece
should be used as payment. The grasping task to successfully pay a workpiece at a
ring station is significantly different to grasping tasks on the conveyor belts at the
machines. γ3

calib guarantees that the gripper is freshly calibrated to be as precise
as possible, before attempting the payment task.
Lastly, γ4

calib models the progression from one usage state into the next one to
actually enforce a re-calibration after two consecutive grasping tasks.

The machine instructions are modeled with the following constraints, where m̂
denotes the machine that the respective platform model controls:

6 Evaluation 90

γ1
comm :=uc

[
〈(φidle ∨ φprepare, I>), (φprepared, I>)〉,

ψend_put(o, m̂), ψstart_pick(o, m̂) ∨ ψend_plan()
]

γ2
comm :=uc

[
〈(φidle, I>)〉, ψend_pick(o, m̂) ∨ ψstrt_plan(), ψend_put(o′, m̂) ∨ ψend_plan()

]
While constraint γ1

comm ensures that m̂ is prepared whenever necessary (before a
belonging pick action or before the plan ends, in case an object remains in the
machine until the end of the plan), γ2

comm states that machine preparation is not
necessary as long as no product is placed int m̂.

The definition of the above constraints concludes the description of our test do-
main, such that we can proceed with practical results to get an idea of the capa-
bilities of the plan transformation procedure developed through this thesis.

6.4 Benchmarks

We argue that our developed procedure should act as a transparent pos-processing
step within an execution framework, as such we consider it a necessity to transform
plans in real-time without inducing significant overhead to the system.

Therefore, we focus the practical evaluation to determining the bounds both in
terms of the number of decoupled platforms and the lengths of abstract plans that
the presented plan transformation can realistically handle. The results we are
going to show were produced using a prototype implementation of the plan trans-
formation procedure called taptenc (timed automata based plan transformation
encoding), which is available on GitHub 1. Tests were carried out on an Intel
i7-3632QM 2.2 GHz processor.

Towards the former concern, we subsequently merged together the components
presented above on randomly generated plans of length 50. Merging was done by
combining all encodings before the model checking step (see Section 4.1.1), so that
the resulting reachability task had to consider all imposed constraints at once.
Each encoding was also considered separately, results are shown in Figure 6.4,
whereMmerge1 refers to the merged encoding ofMperc andMgrasp. The remaining
automataMmerge2,Mmerge3 andMmerge4 include subsequently more instances of the
communication automaton. The time was measured separately for the different
steps towards the resulting transformed plan: First our tool taptenc creates the
encoding using the algorithms presented in Section 4.1, then the command line
tool verifyta from the UPPAAL suite is used to create the intermediate format
required to perform model checking procedures. The reachability task was carried
out using the command line options -t 2 -Y to obtain the fastest symbolic trace
with pre- and post-stability ensured. Afterwards taptenc was used to convert the
results into a transformed plans.

1https://github.com/TarikViehmann/taptenc

91 6.4 Benchmarks

TIME(ms)

ENCODING

TIME(ms)

LOAD MODEL

TIME(ms)

REACH

TIME(ms)

TRACER

TIME(ms)

SYNTHESIS

NUM

STATES
Mperc 450 218 163 49 16 660
Mcalib 84 72 53 22 9 284
Mcomm1 21 25 20 9 3 62
Mcomm2 23 28 23 11 3 71
Mcomm3 22 23 21 9 3 58
Mcomm4 24 24 19 11 4 60
Mmerge1 628 1873 1324 208 38 2915
Mmerge2 958 2773 1910 295 49 3471
Mmerge3 1885 5188 3463 476 61 4952
Mmerge4 4013 8345 5249 714 95 6673
Mmerge5 15721 20496 11560 1387 314 11806

Figure 6.4: Average results of five runs on randomized plans of length 50.

We can clearly see how much overhead the naive unification of different encodings
introduces to the overall performance, despite the relatively small size of most
of the considered automata. However, we can also observe that the approach is
feasible in principle as the merge of four components on a medium sized plans is
doable in about 10 s. By utilizing further optimizations such as hierarchical merg-
ing strategies and by designing better pruning algorithms, we expect to already
perform sufficiently well to be viable in real-world scenarios. Looking closer at
Figure 6.4 it also appears that the size of the encoded automata is a major factor
considering both the time spent by verifyta to compute the intermediate format
and by taptenc to produce the encoding. Interestingly, the model checking task
itself is not the limiting factor in the conducted tests, which we assume is because
of the guidance that the explicit encoding gives to the underlying task by unfolding
the desired solution path. Given that the approach in Section 4.2 imposed a model
checking challenge that was too complex to solve, we believe that there is a fine
line between the extremes we came up with so far, that leads to a better balance
between the model checking procedure and the encoding size and that has yet to
be found.

We also were interested in the impact that the plan length has on the transforma-
tion procedure, so we also conducted a second set of tests, where the plan length
was subsequently extended to 100, 150 and 300, based on which the encoding of
each individual component, as well as Mmerge1 was computed. We ran the tests
five times and considered the average results of the time it took on the encoder
side versus the time spent on the encoding, the results are shown in Figure 6.5.
The results look quite promising already, given that plans with 150 domain actions
were no major issue. Without much surprise, increasing the plan length seems to
lead to a linear growth of the encoded systems, which is also depicted in Figure 6.6.

6 Evaluation 92

50 100 150 200 250 300

0

2

4

6

8

·104

Plan Length

T
IM

E
(m

s)

Mperc

Mcalib

Mcomm1

Mmerge1

Figure 6.5: Average results of five runs on randomized plans of length 50, 100, 150
and 300. Times of the different steps towards the resulting transformed
plan are accumulated.

50 100 150 200 250 300

0

0.5

1

1.5

·104

Plan Length

S
ta
te
s

Mperc

Mcalib

Mcomm1

Mmerge1

Figure 6.6: Average encoding sizes (measured by the number of states) of five runs
on randomized plans of length 50, 100, 150 and 300.

93 6.5 Improvements and Limitations

6.5 Improvements and Limitations

The showcased benchmark should serve as evidence for the diverse possibilities
our developed procedure offers towards the modeling capabilities when expressing
platform-specific implications on the domain of reasoning. We want to also provide
more ideas to further enrich the formalism in order to cover more problems from
the actual world that are currently outside of the scope of the provided formalisms.

Looking at the perception unit, we essentially modeled execution uncertainties that
arise from hardware specifics through establishing a connection between grasping
action durations and the runtime of ICP. However, typically those uncertainties
are not controllable by any hardware-interface, but just happen through a mix of
exogenous events, variances in the available data and unpredictable interference
from other agents, humans and other foreign entities within the environment.

Our approach can try to deal with execution uncertainties by recalculating timings
of the provided plan. However, there is no notion of uncontrollable behavior in
the classical timed automata formalism. While we can specify intervals for actions
with the help of the constraints of Section 3.4, those do not carry the intended
semantics: In the end it is up to the model checker to determine the optimal dura-
tion for each action, which could even demand to execute an action longer than it
takes to physically perform it. A more accurate depiction of uncertain durations
could be acquired by utilizing the formalism of timed game automata[7], which en-
able to model actions via transitions that the model checker cannot control. This
also requires to re-evaluate the expressive power that constraints connecting hard-
ware specifics with domain concerns have: Facing uncontrollable actions typically
equates to having a control flow that is rather reactive than proactive. Constraints
that require past operation relative to occurring actions do not really make sense
in light of uncontrollable high-level actions, as there generally is no way to fulfill
them. Similarly, constraints such as the provided until chains have to be critically
questioned as they postulate precise temporal behavior between action patterns,
which resembles an uncertain time span.

A different issue we recognized when modeling low-level specifics with timed au-
tomata stems from the need to not only model the intended behavior, but to also
consider the possible control patterns that the model checker might produce when
platform usage is not restricted. Optimizations towards the fastest possible trace
do not exclude unnecessary invocations of low-level control actions that do not
impact the overall time span of the solution. It may be useful to have a notion
of default behavior, such that the focus when designing platform constraints can
be on the intended control rather than on the avoidance of unintended effects.
One possibility is to use a notion of priced timed automata[13] to add rewards to
certain states such that the model checker only leaves them to pursue a desirable
objective.

94

7 Conclusion
This thesis developed a procedure to transform an abstract plan into an executable
one while respecting platform specifics that are not part of the abstract domain.
Having platform components decoupled from the high-level domain allows to adapt
low-level specifics without changing the agent code as different concerns are clearly
separated. The well-understood formalism of timed automata was used to repre-
sent platform components, while the connection between such automata models
and the abstract domain were expressed with metric temporal constraints from a
subset of t-ESG formulas. The two formalisms together allow to express complex
temporal relations, not only between different control states of a low-level compo-
nent modeled as a timed automaton, but also through logical formulas to leverage
the close temporal control in the high-level domain context, while not imposing
any requirements on the used domain planners. A transformation of an abstract
plan into an executable one respecting the connective constraints of the platform
specifics was encoded as a reachability problem on timed automata. Therefore,
the developed procedure benefits from progress in the field of model checking and
existing tools can be used for the computation.

The practical evaluation strongly suggests the feasibility of the presented plan
transformation in real-world scenarios and gives an idea of the modeling capa-
bilities that are entailed by the approach. We considered use-cases that could
benefit from the developed procedure in the context of industrial production-line
scenarios, where a core requirement is to efficiently perform precise grasping tasks.
Expressive formalism to model the involved low-level specifics may greatly increase
the overall performance in those domains, because complex interactions between
different hardware specifics allow for various optimizations when the high-level
domain context is considered. We provided models to conquer different problems
that were encountered when programming real-world robotic platforms and the
preliminary results turned out promising, such that an integration into robotic
frameworks is subject to ongoing work.

To summarize, this thesis explored ways to model low-level specifications as timed
automata in order to separate them from the high-level domain and to transform
high-level plans into executable ones, by respecting the requirements of the¸ mod-
eled components expressed through metric temporal constraints. The problem of
computing executable plans while respecting the modeled dependencies is tackled
by combining the different constraints into a timed automaton and encoding the
plan transformation task as a reachability problem that can be solved by available
model checking tools.

95

Bibliography
[1] Allen, J. F. (1983). Maintaining Knowledge About Temporal Intervals. Com-

mun. ACM, 26(11):832–843.

[2] Alur, R., Courcoubetis, C., and Dill, D. (1990). Model-checking for real-time
systems. In [1990] Proceedings. Fifth Annual IEEE Symposium on Logic in
Computer Science, pages 414–425.

[3] Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T. A., Ho, P.-H.,
Nicollin, X., Olivero, A., Sifakis, J., and Yovine, S. (1995). The algorithmic
analysis of hybrid systems. Theoretical Computer Science, 138(1):3 – 34.

[4] Alur, R. and Dill, D. L. (1994). A theory of timed automata. Theoretical
Computer Science, 126(2):183 – 235.

[5] Anderson, K., Holte, R., and Schaeffer, J. (2007). Partial Pattern Databases.
In Miguel, I. and Ruml, W., editors, Abstraction, Reformulation, and Approxi-
mation, pages 20–34, Berlin, Heidelberg. Springer Berlin Heidelberg.

[6] Asarin, E. and Maler, O. (1999). As Soon as Possible: Time Optimal Control
for Timed Automata. In Vaandrager, F. W. and van Schuppen, J. H., editors,
Hybrid Systems: Computation and Control, pages 19–30, Berlin, Heidelberg.
Springer Berlin Heidelberg.

[7] Asarin, E., Maler, O., Pnueli, A., and Sifakis, J. (1998). Controller Synthesis
For Timed Automata.

[8] BACKHOUSE, R. C. and CARRÉ, B. A. (1975). Regular Algebra Applied to
Path-finding Problems. IMA Journal of Applied Mathematics, 15(2):161–186.

[9] Baier, C., Katoen, J., and Larsen, K. (2008). Principles of Model Checking.
Mit Press. MIT Press.

[10] Bayless, S., Bayless, N., Hoos, H. H., and Hu, A. J. (2015). SAT Modulo
Monotonic Theories. In Proceedings of the Twenty-Ninth AAAI Conference on
Artificial Intelligence, AAAI’15, pages 3702–3709. AAAI Press. event-place:
Austin, Texas.

[11] Behrmann, G., David, A., and Larsen, K. G. (2004). A Tutorial on \sc Uppaal.
In Bernardo, M. and Corradini, F., editors, Formal Methods for the Design of
Real-Time Systems: 4th International School on Formal Methods for the Design
of Computer, Communication, and Software Systems, SFM-RT 2004, LNCS,
pages 200–236. Springer–Verlag.

Bibliography 96

[12] Behrmann, G., Fehnker, A., Hune, T., Larsen, K., Pettersson, P., Romijn,
J., and Vaandrager, F. (2001). Minimum-Cost Reachability for Priced Time
Automata. In Di Benedetto, M. D. and Sangiovanni-Vincentelli, A., editors,
Hybrid Systems: Computation and Control, pages 147–161, Berlin, Heidelberg.
Springer Berlin Heidelberg.

[13] Behrmann, G., Larsen, K. G., and Rasmussen, J. I. (2005). Priced Timed
Automata: Algorithms and Applications. In de Boer, F. S., Bonsangue, M. M.,
Graf, S., and de Roever, W.-P., editors, Formal Methods for Components and
Objects, pages 162–182, Berlin, Heidelberg. Springer Berlin Heidelberg.

[14] Bengtsson, J. and Yi, W. (2003). On Clock Difference Constraints and Ter-
mination in Reachability Analysis of Timed Automata. In Dong, J. S. and
Woodcock, J., editors, Formal Methods and Software Engineering, pages 491–
503, Berlin, Heidelberg. Springer Berlin Heidelberg.

[15] Bengtsson, J. and Yi, W. (2004). Timed Automata: Semantics, Algorithms
and Tools. In Desel, J., Reisig, W., and Rozenberg, G., editors, Lectures on
Concurrency and Petri Nets: Advances in Petri Nets, pages 87–124. Springer
Berlin Heidelberg, Berlin, Heidelberg.

[16] Bogomolov, S., Donzé, A., Frehse, G., Grosu, R., Johnson, T. T., Ladan, H.,
Podelski, A., and Wehrle, M. (2016). Guided search for hybrid systems based
on coarse-grained space abstractions. International Journal on Software Tools
for Technology Transfer, 18(4):449–467.

[17] Bouajjani, A., Tripakis, S., and Yovine, S. (1997). On-the-fly symbolic model
checking for real-time systems. Proceedings Real-Time Systems Symposium,
pages 25–34.

[18] Bouyer, P., Cassez, F., Fleury, E., and Larsen, K. G. (2005). Optimal Strate-
gies in Priced Timed Game Automata. In Lodaya, K. and Mahajan, M., editors,
FSTTCS 2004: Foundations of Software Technology and Theoretical Computer
Science, pages 148–160, Berlin, Heidelberg. Springer Berlin Heidelberg.

[19] Bouyer, P., Dufourd, C., Fleury, E., and Petit, A. (2000). Are Timed Au-
tomata Updatable? In Emerson, E. A. and Sistla, A. P., editors, Computer
Aided Verification, pages 464–479, Berlin, Heidelberg. Springer Berlin Heidel-
berg.

[20] Bozga, M., Daws, C., Maler, O., Olivero, A., Tripakis, S., and Yovine, S.
(1998). Kronos: A model-checking tool for real-time systems. In Ravn, A. P.
and Rischel, H., editors, Formal Techniques in Real-Time and Fault-Tolerant
Systems, pages 298–302, Berlin, Heidelberg. Springer Berlin Heidelberg.

[21] Bérard, B. and Dufourd, C. (2000). Timed Automata and Additive Clock
Constraints. In Information Processing Letters, pages 75–1.

97 Bibliography

[22] Bérard, B., Petit, A., Diekert, V., and Gastin, P. (1998). Characterization of
the Expressive Power of Silent Transitions in Timed Automata. Fundam. Inf.,
36(2,3):145–182.

[23] Bérard, B. and Sierra, L. (2019). Comparing verification with HyTech, Kronos
and Uppaal on the railroad crossing example.

[24] Bøgsted Poulsen, D. and van Vliet, J. (2010). Concrete Delays for Symbolic
Traces. Computer Science, Master, Aalborg University, Department of Com-
puter Science.

[25] Cassez, F., David, A., Fleury, E., Larsen, K. G., and Lime, D. (2005). Efficient
On-the-Fly Algorithms for the Analysis of Timed Games. In Abadi, M. and
de Alfaro, L., editors, CONCUR 2005 – Concurrency Theory, pages 66–80,
Berlin, Heidelberg. Springer Berlin Heidelberg.

[26] Cimatti, A., Clarke, E., Giunchiglia, F., and Roveri, M. (2000). NUSMV:
a new symbolic model checker. International Journal on Software Tools for
Technology Transfer, 2(4):410–425.

[27] Cimatti, A., Giunchiglia, E., Giunchiglia, F., and Traverso, P. (1997). Plan-
ning via model checking: A decision procedure for AR. In Steel, S. and Alami,
R., editors, Recent Advances in AI Planning, pages 130–142, Berlin, Heidelberg.
Springer Berlin Heidelberg.

[28] Clarke, E. M. and Emerson, E. A. (1982). Design and synthesis of synchro-
nization skeletons using branching time temporal logic. In Kozen, D., editor,
Logics of Programs, pages 52–71, Berlin, Heidelberg. Springer Berlin Heidelberg.

[29] Claßen, J. and Lakemeyer, G. (2008). A Logic for Non-terminating Golog
Programs. In Proceedings of the Eleventh International Conference on Princi-
ples of Knowledge Representation and Reasoning, KR’08, pages 589–599. AAAI
Press. event-place: Sydney, Australia.

[30] Coelen, V., Deppe, C., Gomaa, M., Hofmann, T., Karras, U., Niemueller, T.,
Rohr, A., and Ulz, T. (2019). The RoboCup Logistics League Rulebook for 2019.
RoboCup Logistics League Technical Committee.

[31] de Moura, L. and Bjørner, N. (2008). Z3: An Efficient SMT Solver. In
Ramakrishnan, C. R. and Rehof, J., editors, Tools and Algorithms for the Con-
struction and Analysis of Systems, pages 337–340, Berlin, Heidelberg. Springer
Berlin Heidelberg.

[32] De Moura, L. and Bjørner, N. (2011). Satisfiability Modulo Theories: Intro-
duction and Applications. Commun. ACM, 54(9):69–77.

[33] Dill, D. L. (1990). Timing assumptions and verification of finite-state concur-
rent systems. In Sifakis, J., editor, Automatic Verification Methods for Finite
State Systems, pages 197–212, Berlin, Heidelberg. Springer Berlin Heidelberg.

Bibliography 98

[34] Eén, N. and Sörensson, N. (2004). An extensible SAT-solver. Theory and
Applications of Satisfiability Testing, pages 333–336.

[35] Floyd, R. W. (1962). Algorithm 97: Shortest Path. Commun. ACM, 5(6):345–
.

[36] Frehse, G., Le Guernic, C., Donzé, A., Cotton, S., Ray, R., Lebeltel, O.,
Ripado, R., Girard, A., Dang, T., and Maler, O. (2011). SpaceEx: Scalable
Verification of Hybrid Systems. In Gopalakrishnan, G. and Qadeer, S., editors,
Computer Aided Verification, pages 379–395, Berlin, Heidelberg. Springer Berlin
Heidelberg.

[37] Gebser, M., Kaufmann, B., Neumann, A., and Schaub, T. (2007). clasp:
A Conflict-Driven Answer Set Solver. In Baral, C., Brewka, G., and Schlipf,
J., editors, Logic Programming and Nonmonotonic Reasoning, pages 260–265,
Berlin, Heidelberg. Springer Berlin Heidelberg.

[38] Ghallab, M., Howe, A., Knoblock, C., Mcdermott, D., Ram, A., Veloso, M.,
Weld, D., and Wilkins, D. (1998). PDDL—The Planning Domain Definition
Language.

[39] Giunchiglia, F. and Traverso, P. (2000). Planning as Model Checking. In
Biundo, S. and Fox, M., editors, Recent Advances in AI Planning, pages 1–20,
Berlin, Heidelberg. Springer Berlin Heidelberg.

[40] Gregory, P., Long, D., Fox, M., and Beck, J. C. (2013). Planning Modulo The-
ories: Extending the Planning Paradigm. In Proceedings of the Twenty-Second
International Conference on International Conference on Automated Planning
and Scheduling, ICAPS’12, pages 65–73. AAAI Press. event-place: Atibaia,
São Paulo, Brazil.

[41] Henzinger, T. A., Nicollin, X., Sifakis, J., and Yovine, S. (1994). Sym-
bolic Model Checking for Real-Time Systems. Information and Computation,
111(2):193 – 244.

[42] Henzinger, T. A., Pei-Hsin Ho, and Wong-Toi, H. (1995). HYTECH: the next
generation. In Proceedings 16th IEEE Real-Time Systems Symposium, pages
56–65.

[43] Hoffmann, J. (2003). The Metric-FF Planning System: Translating “Ignor-
ing Delete Lists” to Numeric State Variables. Journal of Artificial Intelligence
Research, 20:291–341.

[44] Hoffmann, J. and Nebel, B. (2011). The FF Planning System: Fast Plan
Generation Through Heuristic Search. CoRR, abs/1106.0675.

[45] Hofmann, T. and Lakemeyer, G. (2018). A Logic for Specifying Metric Tem-
poral Constraints for Golog Programs. In Proceedings of the 11th Cognitive

99 Bibliography

Robotics Workshop 2018, co-located with 16th International Conference on Prin-
ciples of Knowledge Representation and Reasoning, CogRob@KR 2018, Tempe,
AZ, USA, October 27th, 2018., pages 36–46.

[46] Hofmann, T., Mataré, V., Schiffer, S., Ferrein, A., and Lakemeyer, G. (2018).
Constraint-Based Online Transformation of Abstract Plans into Executable
Robot Actions. In AAAI Spring Symposium 2018 on Integrating Representation,
Reasoning, Learning, and Execution for Goal Directed Autonomy, Stanford, CA,
USA.

[47] Holzmann, G. (2003). Spin Model Checker, the: Primer and Reference Man-
ual. Addison-Wesley Professional, first edition.

[48] Kautz, H. and Selman, B. (1996). Pushing the Envelope: Planning, Proposi-
tional Logic, and Stochastic Search. In Proceedings of the Thirteenth National
Conference on Artificial Intelligence - Volume 2, AAAI’96, pages 1194–1201.
AAAI Press. event-place: Portland, Oregon.

[49] Kitano, H., Asada, M., Kuniyoshi, Y., Noda, I., and Osawa, E. (1998).
RoboCup: the Robot World Cup Initiative. Proceedings of the International
Conference on Autonomous Agents.

[50] Koymans, R. (1990). Specifying real-time properties with metric temporal
logic. Real-Time Systems, 2(4):255–299.

[51] Kupferschmid, S., Hoffmann, J., Dierks, H., and Behrmann, G. (2006). Adapt-
ing an AI Planning Heuristic for Directed Model Checking. In Valmari, A., ed-
itor, Model Checking Software, pages 35–52, Berlin, Heidelberg. Springer Berlin
Heidelberg.

[52] Kupferschmid, S., Wehrle, M., Nebel, B., and Podelski, A. (2008). Faster
Than Uppaal? In Gupta, A. and Malik, S., editors, Computer Aided Verifica-
tion, pages 552–555, Berlin, Heidelberg. Springer Berlin Heidelberg.

[53] Lakemeyer, G. and Levesque, H. J. (2004). Situations, Si! Situation Terms,
No! In Proceedings of the Ninth International Conference on Principles of
Knowledge Representation and Reasoning, KR’04, pages 516–526. AAAI Press.
event-place: Whistler, British Columbia, Canada.

[54] Largouët, C., Krichen, O., and Zhao, Y. (2016). Temporal Planning with
extended Timed Automata. In Bourbakis, N., Esposito, A., Mali, A., and Ala-
maniotis, M., editors, 28th International Conference on Tools with Artificial
Intelligence (ICTAI 2016), SAN JOSE, United States. IEEE.

[55] Levesque, H. J., Reiter, R., Lespérance, Y., Lin, F., and Scherl, R. B. (1997).
GOLOG: A logic programming language for dynamic domains. The Journal of
Logic Programming, 31(1):59 – 83.

Bibliography 100

[56] Li, Y., Sun, J., Dong, J. S., Liu, Y., and Sun, J. (2012). Planning as Model
Checking Tasks. In 2012 35th Annual IEEE Software Engineering Workshop,
pages 177–186.

[57] Matare, V., Schiffer, S., and Ferrein, A. (2018). golog++ : An Integrative
System Design. In Proceedings of the 11th Cognitive Robotics Workshop.

[58] McCarthy, J. and Laboratory, S. A. I. (1963). Situations, Actions, and Causal
Laws. Memo (Stanford Artificial Intelligence Project). Stanford University, Ar-
tificial Intelligence Project.

[59] Morbé, G., Pigorsch, F., and Scholl, C. (2011). Fully Symbolic Model Check-
ing for Timed Automata. In Gopalakrishnan, G. and Qadeer, S., editors, Com-
puter Aided Verification, pages 616–632, Berlin, Heidelberg. Springer Berlin Hei-
delberg.

[60] Niebert, P., Tripakis, S., and Yovine, S. (2000). Minimum-Time Reachability
for Timed Automata. In IEEE Mediteranean Control Conference.

[61] Niemueller, T., Ewert, D., Reuter, S., Ferrein, A., Jeschke, S., and Lakemeyer,
G. (2013). RoboCup Logistics League Sponsored by Festo: A Competitive
Factory Automation Testbed. In RoboCup Symposium 2013.

[62] Niemueller, T., Zug, S., Schneider, S., and Karras, U. (2016). Knowledge-
Based Instrumentation and Control for Competitive Industry-Inspired Robotic
Domains. KI - Künstliche Intelligenz, 30(3):289–299.

[63] Panek, S., Engell, S., and Stursberg, O. (2006a). Scheduling and planning with
timed automata. In Marquardt, W. and Pantelides, C., editors, 16th European
Symposium on Computer Aided Process Engineering and 9th International Sym-
posium on Process Systems Engineering, volume 21 of Computer Aided Chemical
Engineering, pages 1973 – 1978. Elsevier.

[64] Panek, S., Stursberg, O., and Engell, S. (2006b). Efficient synthesis of produc-
tion schedules by optimization of timed automata. Control Engineering Practice,
14:1183–1197.

[65] Reiter, R. (2001). Knowledge in Action: Logical Foundations for Specifying
and Implementing Dynamical Systems. MIT Press.

[66] Russell, S. and Norvig, P. (2010). Artificial Intelligence: A Modern Approach.
Series in Artificial Intelligence. Prentice Hall, Upper Saddle River, NJ, third
edition.

[67] Schupp, S., Abraham, E., Ben Makhlouf, I., and Kowalewski, S. (2017).
HyPro: A C++ Library for State Set Representations for Hybrid Systems
Reachability Analysis. In Proc. of the 9th NASA Formal Methods Symposium
(NFM’17), volume 10227 of LNCS, pages 288–294. Springer International Pub-
lishing.

101 Bibliography

[68] Tripakis, S., Yovine, S., and Bouajjani, A. (2005). Checking Timed Büchi
Automata Emptiness Efficiently. Formal Methods in System Design, 26:267–
292.

[69] Wang, F. (2004). Efficient verification of timed automata with BDD-like data
structures. International Journal on Software Tools for Technology Transfer,
6(1):77–97.

	Introduction
	Preliminaries
	Timed Automata
	Syntax
	Semantics
	Region Graphs
	Zone Graphs
	Difference Bound Matrices
	Complexity Results
	Extensions

	Model Checking
	TCTL

	Model Checking Tools
	UPPAAL
	verifyta

	Metric Temporal Constraints in t-E S G
	Syntax of t-E S G
	Semantics of t-E S G

	Agent Programming in GOLOG
	golog++

	Related Work
	Model Checking and Planning
	Timed Automata in Planning Domains

	Constraint-Based Plan Transformations
	Requirements and Objectives
	Overview of the Procedure
	Platform models as Timed Automata
	Constraints
	Constraints Based on the Occurrence of Actions
	Constraints Based on the Duration of Actions
	Constraints from the High-Level Domain

	Plan Synthesis as Reachability Problem
	Direct Encoding
	Encoding Example
	Auxiliary Functions
	Encoding occ(,GI)
	Encoding occ(,1UI2)
	Encoding occ(,HI)
	Encoding occ(,1SI2)
	Encoding uc(B,1,2)
	Merging Encodings of Different Models

	Modular Encoding Using Communication Between Automata

	Synthesizing Executable Plans
	Calculating Execution Start Intervals
	Recalculating Action Start Times

	Evaluation
	Benchmark Domain
	High-Level Temporal Constraints

	Platform Models
	Perception Unit
	Axis Calibration
	Communication Interfaces

	Platform Constraints
	Benchmarks
	Improvements and Limitations

	Conclusion

