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Abstract In this paper we discuss a system layout for

cognitive service robots and our implementation of such a

system. Our focus is on integrating qualitative reasoning

and human-robot interaction. After introducing the

domestic service robotics domain with its challenges and

the RoboCup@Home initiative we present our robot plat-

form, its basic capabilities and its high-level reasoning

system. Then, we discuss a system layout for a cognitive

service robot in domestic domains, and we show how

components of our service robot implement elements of

such a system layout. We discuss strengths and limitations

of these components and of the overall system.

Keywords Qualitative reasoning � Human-robot

interaction � Domestic service robotics �
RoboCup@Home � Situation calculus

1 Introduction

Research areas in robotics are as diverse as the possible

applications of robots. We are concerned with what is often

called cognitive robotics. Cognitive robotics as introduced

by the late Ray Reiter is to be understood as ‘‘the study of

the knowledge representation and reasoning problems

faced by an autonomous robot (or agent) in a dynamic and

incompletely known world’’ [18]. Our application domain

is domestic service robotics. It deals with socially assistive

robots that perform helpful tasks for humans in and around

the house. These robots must be able to engage in com-

munication with the humans around them. What is more,

when a robot needs to assist humans with complex and

cognitively challenging tasks, it must be endowed with

some form of reasoning that allows to take decisions on the

course of action in complex scenarios. In addition, auton-

omous operation for extended periods of time is only

possible if the robot can handle certain variations and

unavoidable errors by itself. Also, it should be flexible in

dealing with human fallibility. We refer to such a robot as a

cognitive service robot system.

In this paper, we discuss the overall system layout of

such a cognitive service robot for domestic domains that

integrates qualitative reasoning and human-robot interac-

tion. The remainder is structured as follows. We start with

introducing the domestic service robotics domain with its

challenges and the ROBOCUP@HOME initiative. After that,

we present our domestic service robot CAESAR, its basic

capabilities and its high-level reasoning. Then we discuss a

system layout for a cognitive service robot in domestic

domains and we show how components of our domestic

service robot realize elements of such a system layout. The

paper is based on the contributions of my doctoral disser-

tation thesis [24]. Parts of this work have earlier been

presented in [28] already. A discussion of lessons learnt

from developing the platform can be found in [13].

2 The Domestic Service Robot Caesar

We start with introducing the domestic service robotics

(DSR) domain. Then, we present the ROBOCUP@HOME

initiative as a testbed and as a benchmark for service

robotics in domestic environments. After briefly reviewing

related approaches on developing personal service robots
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we present our domestic service robot CAESAR, its basic

capabilities and its high-level reasoning system.

2.1 Challenges for Domestic Service Robots

A service robot in a human environment needs to have a set

of basic capabilities. That is, it needs to be able to localize

itself and it needs to navigate around humans in a safe way.

Further, it should be able to detect and recognize objects

and it should be able to manipulate things in its environ-

ment. When working around and together with humans

such a robot should also be able to detect, recognize and

track people. It must be able to communicate with the

humans around it and it needs to interpret the commands

these humans use to instruct the robot. What is more, the

robot also needs a powerful and flexible high-level control

that can come up with a course of action for complex tasks

that require an intelligent combination of its basic capa-

bilities. This is even more important when the robot should

assist an elderly or disabled person with a cognitively

challenging task.

2.2 The RoboCup@Home Initiative

In order to bring forward the development of domestic robots

that can meet the challenges described above, there exist a

number of efforts. One among them is the ROBOCUP@HOME

initiative [35, 36], which particularly focuses on domestic

service robot applications. ROBOCUP@HOME was established

as a distinguished league inside the ROBOCUP initiative [17]

in 2006. The motivation was to provide a testbed and a

benchmark for domestic service robotic systems that brings

such robots out of their confined lab conditions into the real

world. ROBOCUP@HOME is designed to be both, a scientific

competition and a benchmark for domestic service robots

[37]. It is an effort to test individual components of DSR

systems as well as the integration of the system as a whole.

The general idea in the ROBOCUP@HOME competition is

to set up a home-like scenario that is as realistic as possible

and to let robots perform a set of tests in that environment.

Tasks are, for example, acting as a party host, welcoming

and seating people or helping with fetching items in the

house. An example of the arena is shown in Fig. 1b.

2.3 Developing Personal Service Robotics

There is a huge body of related work on developing per-

sonal service robots, not only in the context of ROBOCU-

P@HOME. Our focus is on qualitative reasoning and human-

robot interaction which is why we only briefly discuss a

few related approaches. For a more detailed review we

refer the interested reader, for example, to [24].

There are various ways to implement the high-level

behavior of an autonomous mobile service robots. While

for a lot of specific sub-tasks, statistical methods are

used, for the high-level control sometimes plan-based

approaches come into play. For example, well-founded

formal basics allow for an open-ended application of

personal robots in human environments such as for

every-day manipulation tasks [2]. The authors in [1]

report on how they include the presence of humans in

their robot control and the robot’s decisional abilities.

The approach reported on in [6] uses classical AI

planning techniques to determine a course of action to

execute commands of a human user with taking into

account the current situation. The domestic service robot

presented in [7] features reasoning capabilities using an

ontology and HTN planning. In [8], the authors report

on developing a service robot that uses a broad spectrum

of AI techniques. For instance, to integrate natural

language processing with action planning, they use

answer set programming and to improve on their robot’s

abilities they use commonsense reasoning and non-

monotonic reasoning.

The approaches above present only a selection of fea-

sible solutions to particular challenges and some have

favorable properties in their integration efforts. In this

paper, we focus on the layout and the components of a

cognitive service robot system that uses a logic-based

approach in its high-level control. Building on existing

work [12] we discuss an approach to integrate qualitative

reasoning and human-robot interaction by allowing for

using human-oriented representations and control. Along

with semantic information that can be attached to lower

level data this makes for a valuable step towards a capable

service robotic system. Also, we consider increasing

robustness by some form of self-maintenance and main-

taining flexibility in interpreting possibly faulty commands

given to the robot by human users.

(a) Caesar (b) RoboCup@Home arena from 2008

Fig. 1 The domestic service robot CAESAR and an example of a

RoboCup@Home competition arena
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2.4 The Domestic Service Robot Caesar

Starting in 2006, we continuously developed CAESAR, a

mobile service robot that we use in domestic settings and in

the ROBOCUP@HOME competitions. It is based on a plat-

form initially designed and used for the ALLEMANIACS

ROBOCUP MSL team. It received several improvements

dedicated to the specific requirements of domestic service

robotics since then. The robot platform from 2012 can be

seen in Fig. 1a.

Two wheelchair motors forming a differential drive

allow the robot to drive up to 3 m/s. A 360� laser range

finder is used for localization and collision avoidance. Two

additional laser range finder increase the perception for

range operations. An RGB-D camera on a pan-tilt unit

provides visual input, two microphones on the same unit

complement the perception with an aural cue. The robot is

further equipped with an anthropomorphic arm with five

degrees of freedom for manipulation.

We started off with a software framework called

RCSOFT that was already used in the ROBOCUP MIDDLE

soccer competitions. It features a blackboard architecture

where any component can post data to a blackboard that

then other components can read from. Since 2009 we

started slowly migrating our software components to the

Fawkes1 robot framework [20]. Also, we started to port the

mid-level behaviors that were previously implemented as

state machines to a Lua-based behavior engine [21]. A

discussion of lessons learnt from developing CAESAR can be

found in [13].

2.5 Basic Capabilities

The robot CAESAR is equipped with a set of basic capa-

bilities that are fundamental for every mobile robot. A

method for local navigation and collision avoidance [16]

enables the robot to safely move around in human

populated environments. Localization is provided by a

method initially developed for the soccer domain [34]. It

works very well in domestic settings as well since its

application in office like scenarios was already planned

for in the first place. The maps used for localization are

created with a mapping scheme that allows for including

semantical annotations [27]. It provides the robot with

metric maps for localization just as well as with addi-

tional semantic information that can be used on higher

levels in the robot software architecture. As an example,

the path planning works with an A* search on a topo-

logical graph that is generated by the semantic mapping

tool. CAESAR also has different modules for perception

and manipulation in place. A component among these

modules that bridges between the low-level sensory

information and the qualitative reasoning on higher

levels is the object detection and recognition system

[22]. Objects known to the robot are stored and labeled

with descriptive attributes. This allows for creating and

recognizing object classes on the fly by combining

several of these attributes at run-time. A more detailed

account can be found in [24].

2.6 High-Level Control

The high-level control of our robot is based on READYLOG, a

dialect of the Golog family. It is based on Reiter’s version

of the situation calculus [19, 23], which is a sorted first-

order logical language2 with equality that allows for rea-

soning about actions and their effects. Properties of the

world are described by so-called functional and relational

fluents whose value depends on the situation. The world

then evolves along actions. Starting in a situation s, per-

forming the actions grab and pickup results in a situation

s0 ¼ doðpickup; doðgrab; sÞÞ. There is a dedicated initial

situation S0 where no action has occurred yet. Golog is an

agent language based on the situation calculus. It combines

Algol-like programming constructs with non-deterministic

constructs. To be able to reason about a actions and change

in a particular world, one has to provide a so-called Basic

Action Theory (BAT) [23]. It specifies what is true in the

initial situation as well as action preconditions and action

effects.

Our variant of Golog is called READYLOG [12] and it

integrates various (existing) extensions to cope with the

real world. It features a transition semantics where a logical

predicate transðr; s; r0; s0Þ is used to indicate that executing

one step of program r in situation s yields the remaining

program r0 and results in situation s0. A feature of partic-

ular importance is decision-theoretic planning using Mar-

kov Decision Processes in the spirit of [4].

As an example, consider a coffee delivery domain where

the robot’s task is to serve people with coffee.

proc DeliverCoffee
while ∃x.WantsCoffee(x) do

pickBest x.WantsCoffee(x);
if ¬HasCoffee(x) then

goto(CoffeeM); loadCoffee
endif
goto(x); giveCoffee(x)

endwhile
endproc

The above (simplified) READYLOG program uses its

decision-theoretic planning to select an element x from the

set of persons that want coffee, using the underlying opti-

mization theory. That person is then served with coffee.

1 http://www.fawkesrobotics.org. 2 With a second-order axiom.
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This cycle is repeated for as long as there is someone that

wants coffee.

2.7 CAESAR in Action

To illustrate the potential of integrating modules for

human-robot interaction with the qualitative reasoning we

showcase an application in a domestic setting [25]. Con-

sider the robot’s task is to help set the table. In particular,

the robot should rearrange a set of three differently colored

cups. Just to exemplify how the high-level reasoning

capabilities of the robot can pay off, the robot should

compute a reordering with a minimum number of moves.

To arrive at a natural interaction we use some basic human-

robot interaction (HRI) components (cf. Sect. 3.1) to

inquire with the human user on how the rearrangement

should look like. More precisely, the human user can use

speech input and pointing gestures (which again involve

face detection) to point to positions on a table and to

specify where certain items should be put. To arrive at a

sequence of actions with a minimum number of moves for

the robot to execute, it uses decision-theoretic planning like

it is available in READYLOG. Although the application seems

rather simplistic at first, it indicates that the capability of

high-level reasoning can be seamlessly integrated in a

natural interaction and that the robot can assist the human

user with cognitively challenging tasks.

3 A Cognitive Service Robot System Layout

We now discuss a cognitive system layout for applications

in domestic service robotics. After giving an overview of

the layout we go through the components and present their

particular features and their contribution to the overall

system.

3.1 System Layout Overview

Figure 2 shows an overview of the elements that we think

are necessary and useful for a cognitive robotic system.

The particular focus is on integrating qualitative reasoning

and human-robot interaction for applications in domestic

domains.

The blue elements are components that provide basic

capabilities like collision avoidance and localization. The

green boxes represent high-level components, that is,

components featuring a sophisticated reasoning mecha-

nism. The orange components bridge between the high-

level and the human or extend the high-level with

mechanisms to facilitate intuitive interaction. The yellow

box finally, is an optional but desirable component to

enable enduring autonomy. It is an extension of the high-

level control that has tight connections to the basic

components We detail the particular components in the

following.

3.2 Basic Human-Robot Interaction Modules

Our domestic service robot is supposed to interact with

laymen. Hence, it needs to be operable by such laymen and

the interaction between the human and the robot needs to

be as natural and intuitive as possible. This is why we

argue for extending the basic capabilities with modules for

three important human-robot interaction components,

namely speech, face, and gesture recognition. We consider

these components since they represent (perhaps the most)

important modalities in human-robot interaction.
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3.2.1 Speech Recognition

Face to face communication between humans is mostly

done using speech. Hence, speech recognition is a crucial

ability for a mobile service robot that should communicate

with humans. However, spoken language is a natural and

convenient way to instruct a robot only if it is processed

reliably. Modern speech recognition systems can achieve

high recognition rates, but their accuracy often decreases

dramatically in noisy and crowded environments. This is

usually dealt with by either requiring an almost noise-free

environment or by placing the microphone very close to the

speaker’s mouth. Although we usually already assume the

latter, all requirements for a sufficiently high accuracy

cannot always be met in realistic scenarios. Therefore, we

developed and implemented a system that tackles the

problem of robust speech recognition in noisy environ-

ments [10].

3.2.2 Face Detection, Recognition, and Learning

Service robots aim at offering assistance to humans in

general and to people with disabilities in particular. Such

robots socially interact with human beings, i.e., they

respond dynamically to requests and communicate. The

interaction can be more natural if the robot can identify

persons it encounters. We expect that on encountering

unknown identities, the robot may introduce itself and add

the new identity to its knowledge base. Therefore, a fast

and reliable face recognition system is required, which, in a

first step, detects faces and, in a second step, recognizes the

persons. This task is complicated by the computational

limitations of common mobile robots. We presented a one-

step real-time method for face detection, recognition, and

learning delivering on the above requirement in [3].

3.2.3 Gesture Recognition

We already considered speech as a means for intuitive

control and interaction with a domestic service robot.

However, a huge part of meaning in communication is

also transferred via non-verbal signals [11]. A very

important mode of this non-verbal communication is

using gestures. This is especially true in interaction with a

domestic service robot, since controlling the robot often

relates to entities in the world such as objects and places

or directions. References to objects can conveniently be

made by pointing gestures while other dynamic gestures

can be used to indicate directions or commands. We

designed and implemented a modular multi-step archi-

tecture [26] that avoids undesirable properties of existing

approaches such as calibration requirements or high

computational demands.

3.2.4 Other HRI Components

Human-robot interaction can be made even more natural

and affective. To be able to communicate with its human

users we have some additional components in place. A

convenient mode for the robot to deliver information to the

user, especially when speech input has been used, is to

generate spoken output. We do this using the freely

available Festival3 speech synthesis system. For displaying

additional information and to support instructions or hints

given to the user we have a display installed on the robot

that can show pictures and other information. Since it is a

touch display it can also be used to command the robot, e.g.

if other inputs have failed. The monitor further shows a

virtual face to increase the affectiveness of the robot. To be

able to properly react to the presence of humans the robot

uses its visual and aural sensors to detect and track persons

over time.

3.3 High-Level Reasoning

A domestic service robot that needs to assist humans with

complex and cognitively challenging tasks, must be

endowed with some form of reasoning that allows it to take

decisions in such complex scenarios. This high-level rea-

soning abstracts from the details of lower levels and pro-

vides mechanisms to come up with a dedicated course of

action for a robot to reach a particular goal. Our robot

features a logic-based high-level reasoning component as

already described in Sect. 2.6. It allows for flexibly com-

bining programming and planning in the behavior specifi-

cation of the robot. Both ends of the spectrum, pure

programmed behavior or using full planning to determine

the course of action, are fully included.

3.4 Qualitative Representations

Humans use different means to represent their surroundings

when talking to each other than a robot would do. In a

technical system, in general, and in a robot, in particular,

numbers are used to represent things like speed, distance,

and orientation. In contrast, humans use imprecise lin-

guistic notions. A robotic system that assists humans in

their daily life, must be equipped with means to understand

and to communicate with humans in terms and with notions

that are natural to humans. To this end, we extended our

high-level control to use qualitative representations using a

semantics based on Fuzzy sets [14]. These so-called fuzzy

fluents have a membership function attached to them. The

membership function indicates to what degree a numerical

value of a fluent belongs to a qualitative category. The

3 http://www.cstr.ed.ac.uk/projects/festival/.
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categories are given by linguistic terms such as near or

fast. Whether or not a fuzzy fluent is member of one or

more such categories (or a category’s complement) can be

queried by special predicates. Such qualitative representa-

tions using human notions can be formulated for many

different entities that for a robot normally have numerical

values.

3.5 Qualitative Control

Sometimes, in the behavior specification of a mobile ser-

vice robot rather reactive control is just enough. For such

cases, we implemented and integrated the concept of a

fuzzy controller into READYLOG as well [15]. T his allows to

specify a set of simple if-then-else rules using the quali-

tative notions introduced before to assign values to certain

control variables.

3.6 Qualitative Spatial Representations

and Reasoning

Many of the qualitative notions used in domestic service

robotics settings are spatial. Whenever either the robot or

the human refer to real objects or places they need to

express positional information. To account for this and to

further bridge the gap between the robot and its human user

we developed a particular extension of our qualitative

reasoning for positional information [29]. As a special form

of fuzzy fluents we introduce positional fluents. Building

on the similarity to polar coordinates, a position can be

referred to by a distance and an orientation component.

These two components can be individually abstracted to

qualitative categories following [9]. By additionally asso-

ciating a frame of reference to each such positional fluent,

we are able to account for contextual information like

different scales, an intrinsic front direction and reference

objects.

3.7 Semantic Annotations

Another building block to mediate between the raw

sensor data and the numerical information that the base

components of a cognitive robot work with are semantic

annotations. In our cognitive robot system, for instance,

we allow for generating semantically annotated maps

[27]. This attaches semantic information to places like

functions of a room or where it is likely to find people in

an apartment. Another example is part of our object

recognition [22], where objects are described by a set of

(semantic) attributes. This way, we can dynamically

build classes of objects, for example, all objects with a

specific color.

3.8 Natural Language Interpretation

Humans tend to be imprecise and imperfect in their natural

spoken language. Therefore, when natural language is used

to give instructions to a robot, the robot is potentially

confronted with incomplete, ambiguous, or even incorrect

commands. Aiming for a robust and flexible system we

developed a method for natural language interpretation that

can account for handling such fallibility to a certain degree

[30, 31].

3.9 Self-Maintenance

A robotic system that is capable of planning and executing

complex tasks is a complex system itself. That is why such

a system is itself vulnerable to errors. These errors are not

restricted to action execution but span to internal system

errors as well. As an additional component in the system

layout we proposed a constraint-based system for self-

maintenance [32, 33] that is able to detect and circumvent

certain errors. Thus we increase the system’s robustness

and enable longer-term autonomous operation.

4 Discussion

A system implemented along the layout sketched above

makes for an accessible assistive robot. In this section we

review details and discuss the strengths and limitations of

individual components of our cognitive service robot as

well as of the overall system layout.

4.1 Basic Human-Robot Interaction

The necessity for providing a cognitive service robot with

means to support common modes of human communica-

tion is rather clear. Consequently, most domestic service

robots feature modules for human-robot interaction. What

sets apart our approaches to such basic HRI components

will be discussed in the following.

4.1.1 Speech Recognition

Our basic speech recognition component comprises two

steps. First, we use a threshold based close speech detec-

tion module to segment utterances targeted at the robot

from the continuous audio stream recorded by the micro-

phone. Then, we decode these utterances with two different

decoders in parallel, namely one very restrictive decoder

based on finite state grammars and a second more lenient

decoder using N-grams. We do this to filter out false pos-

itive recognitions by comparing the output of the two
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decoders and rejecting the input if it was not recognized by

both decoders. This allows us to combine the reliability of

a grammar based approach with the flexibility of N-gram

approaches. We can avoid to have the robot react on single

keywords that would be falsely mapped to a full command

by grammar-only approaches. For details on our dual-de-

coder based speech recognition we refer to [10].

4.1.2 Face Detection, Recognition, and Learning

We approach a one-step system that addresses both face

detection and recognition in an integrated framework using

random forests (RF) with haar-like features. The advan-

tages of RFs have been thoroughly investigated [5] and it

has been shown that RFs are fast and have good general-

ization capabilities. Additionally, we introduce identity

learning, as an extension to this framework. A collection of

face images for a new identity captured by the robot can be

added to the knowledge base in real-time, i.e., the robot

learns to recognize new persons from that instant. This is

made feasible as a result of a very short training time. The

unified framework allows for training complete trees for

realistic application scenarios with about ten identities in

below a millisecond. For a more detailed account of our

one-step real-time method for face detection, recognition,

and learning we refer to [3].

4.1.3 Gesture Recognition

We subdivide the process of gesture recognition into four

main steps: hand detection, posture recognition, hand

tracking, and finally gesture recognition. Hand detection

is the task of finding the position of one or more hands in

an image, where we follow a color-based approach.

Instead of using a pre-trained skin-color, we extract its

value from face detection, which also yields robust

operation for different lighting conditions. To increase

robustness against false detections, we additionally apply

a hand verification step. Posture recognition then is to

determine the shape of the hand, that is to say the con-

figuration of the fingers (e.g., a fist or an open hand) and

the orientation of this posture. Both, hand verification and

posture recognition are performed using random forests

with haar-like features for classification. Hand tracking

refers to recording the position of the hand (and its pos-

ture) over a sequence of images. Finally, gesture recog-

nition is understood as identifying a specific dynamic

movement of the hand from the trajectory formed over

time. The modular architecture allows to replace single

items with versions with a better performance at any time.

Also, the intermediate steps yield useful information that

can be used for interaction already. The details of our

gesture recognition are presented in [26].

4.2 Qualitative Representations and Control

While other domestic personal service robots provide

options for qualitative representations as well, we see two

major benefits with our method. First, our formalism is

flexible enough to allow for applying it to a very large

range of entities. Whether it is about emotional states like

happy and sad or spatial information like distance or

orientation, the framework fits equally well. Second, the

tight integration with our high-level reasoning allows not

only for easily using human-like statements in the behavior

specification. It also facilitates the seamless interaction

between the robot and the human in a straightforward

fashion. The qualitative representations can be used for a

reactive form of control in the robot’s high-level system

also. Implementing the concept of a Fuzzy controller, the

representations can be used to formulate a set of simple if-

then-else rules to quickly and easily specify reactive

behavior. This simplifies the design of agent controllers for

straightforward tasks like to follow a person.

Since spatial references are frequently used in domestic

applications, our extension for representing and reasoning

with qualitative positional information pays off well.

Again, naturalness can be increased and the available

reasoning capabilities of the robot can be made available

seamlessly. By keeping the connection between the

numerical and the qualitative values of fluent we are able to

integrate qualitative fluents in our formal framework in

such a way, that we can transfer between the qualitative

and the quantitative counterparts automatically whenever

this is necessary.

4.3 Semantic Annotations

To bridge between the raw data provided by the low-level

components on the one hand and the semantic concepts and

terms used by humans and in the high-level control on the

other hand we need to establish connections between the

two. We presented two examples for how we do that,

namely the generation of semantically enriched maps and

the labeling of objects with descriptive attributes. In both

cases, the link between the raw data and the semantic

annotations is maintained. This allows to descriptively

reference items throughout the system. What has not been

addressed in our system yet though is a proper object

identity management in the sense that objects with the

same semantic properties can not necessarily be distin-

guished from one another.

4.4 Natural Language Interpretation

The general idea of our language interpretation is to try to

map human instruction to an available robot capability.
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The process uses a syntactical decomposition of the utter-

ance first to distill what we refer to as the essence of the

utterance. Then, we cast the interpretation as a decision-

theoretic planning problem. In the planning, we try to find

best fits for mapping the verb in a command to an action of

the robot and for mapping the objects in the command to

parameters of the action.

Consider the situation where the robot is trying to

interpret the utterance ‘‘Robot, go to the kitchen’’. The

system tries to assign a robot action to the verb extracted

from the utterance first. This includes all actions on the

robot that have go listed as a synonym. Then, for every

possible action, it tries to assign the objects that are con-

tained in the utterance to the parameters of the selected

action. In our example, there’s one object, namely the

target location the kitchen. Again, all objects with corre-

sponding synonyms are considered. A successful state is

reached if all elements could be assigned appropriately. In

case of missing assignments or ambiguities the system

issues steps for clarification by asking the user. The fact

that we can account for human fallibility or inaccuracies in

the speech recognition increases the naturalness of our

system and enables longer term autonomy. A more detailed

account of the natural language interpretation is given in

[31].

4.5 Self-Maintenance

Personal service robots can only be deployed if they can

operate autonomously for extended periods of time. To this

end, we integrated a simple form of self-maintenance in

our system. The proposed method implements a transfor-

mation of the robot’s high-level programs by plugging into

the transition semantics. It uses two separate models, one

for the task domain, that is the actions the robot can per-

form in the world, and another for the maintenance

domain, which contains the actions the robot can perform

on itself such as (re-)starting and stopping modules. The

two models are connected by temporal constraints, for

example, that before the robot is able to move around, the

laser range finder used for collision avoidance needs to be

calibrated and the camera subsystem needs to be scanning

for obstacles as well. Even though, in its current form, the

proposed method can only prevent or deal with a limited

set of potential errors, it is a valuable addition to the

autonomy of our service robot. A more concise description

can be found in [32].

4.6 Overall System Layout

As already mentioned, we think that high-level reasoning

is a necessary capability for any cognitive service robot.

This is even more true in domestic domains, where the

robot needs to assist humans with complex and cogni-

tively challenging tasks. However, the high-level rea-

soning can only fully play its role when it is integrated

with the components for human-robot interaction. That is

because the task of the robot is commonly determined by

the human user. To fulfill the user’s request, the robot

therefore has to be able to interpret human notions and it

has to incorporate semantic information about the envi-

ronment as well. Also, the representational gap has to be

closed by allowing for human-like notions to be used

throughout the system.

5 Conclusion

In this paper, we reviewed the layout of a cognitive service

robotic system that integrates qualitative reasoning and

human-robot interaction for applications in domestic ser-

vice robotics. The system layout features components that

allow for implementing a capable service robotic system.

The layout itself and our realization of the individual

components address bridging the gap between the robot

and the human with several measures. This is because we

make available the qualitative notions that humans com-

monly use in the robot system, in general, and in the high-

level reasoning, in particular. This allows for natural

interaction and with its advanced reasoning the robot can

assist its human users with complex and cognitively chal-

lenging tasks. This is especially useful with disabled or

elderly people.
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