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Abstract—The current industrial state of the art for automated
guided vehicles relies on centralised controllers dispatching
transports to vehicles along predefined paths. The design of these
paths is time-consuming and has to be done in advance, followed
by an extensive testing phase. In the field of mobile robotics,
robust path planning and navigation algorithms exist. However,
they have not yet found their way into industrial applications in
larger numbers. In this paper, we present a system architecture
for a decentralised control of multiple automated guided vehicles
performing material transportation tasks in intra-logistic appli-
cations which is based on mobile robotics solutions. The proposed
system includes solutions for self-localisation, behaviour control,
conflict-free routing and motion control. The non-centralised
control of the system architecture allows for dynamic path
planning and traffic coordination. Its implementation is based on
the Robot Operating System, the de-facto standard middleware
for robotics applications. We give an overview of the overall
system architecture as well as the coordination mechanisms and
show a first proof of concept in simulations.

I. INTRODUCTION

Changing product lines, customised products and sophisti-
cated production requirements demand flexible, adaptive and
intelligent industrial manufacturing systems. The complexity
of these systems is especially challenging for intra-logistic
processes. Intra-logistics describes the organisation, realisation
and optimisation of internal material flow. This requires ef-
ficient material transportation, which presumes non-blocking
and non-empty runs.

Therefore, the use of automated guided vehicles (AGV) has
been well-established in the last decades. AGVs are automated
mobile platforms and are used since the 1950s for repeti-
tive material handling tasks in industrial manufacturing and
warehouse systems [1]. Running 24/7, AGVs are increasing
the productivity while reducing labour costs. Their endurance,
precision and reliability are ensuring predictable and traceable
intra-logistic processes. Additionally, high safety standards
are circumventing serious harm to human workers and help
avoiding damages to the facility.

Simple transport tasks are usually rare in industrial appli-
cations. More common are requirements demanding for high
payloads up to 65 t, sophisticated pick-and-drop handling,

high flow rates, temperature ranges between −27 ◦C to 50 ◦C,
indoor and outdoor use cases and collaborative applications.
In the past few years, the topic of Industry 4.0 becomes ever
more important for the field of intra-logistics. The goal here
is to have AGV systems fully integrated with the existing IT
systems. Therefore, a new degree of autonomy is required
which enables operating the fleet of UGVs from the office
desk [2].

AGVs are designed to follow predefined tracks, similar to
trains that are moving along the rails. These tracks are based
on magnet- or inductive guide tapes, implemented on or in
the site floor. This rather old-fashioned approach is still used
in industrial applications, but is currently being replaced by
virtual tracks designed in CAD programs based on the 2D
layouts of the facility. These methods have a long preparation
and implementation time, including a thorough testing phase
at the facility site. This further increases the implementation
cost. As a consequence common AGV systems are not flexible
in adapting to changes. Also, their ability to perceive the
environment is limited, so simple errors can lead to material
flow interrupts.

In this paper, we propose a novel system concept that allows
a higher degree of autonomy and enables the implementation
of current developments for industrial usage. Our approach
comes with more flexibility in the path planning and, hence, it
is easier to adapt the approach to changes in the environment.
The implementation is based on several standard packages that
comes with the Robot Operating System (ROS), on the one
hand; on the other hand, it relies on a number of custom-build
path planning and routing algorithms which are tailored to the
intralogistics scenario.

The rest of the paper is organised as follows. In the next
section, we give an overview of different AGV types that are
used in industrial intra-logistics applications and review some
related approaches. In Section III, we give a brief introduction
to the Robot Operating System, which the implementation
of our approach is based on. In Section IV we present the
architecture of our non-centralised control system before we
conclude.



II. AUTOMATED GUIDED VEHICLE

AGVs are deployed in a number of different application
domains and the range of vehicle types has increased alongside
customers’ needs. Primary applications are in manufactur-
ing, warehousing, automotive, chemical, paper-print, food and
healthcare industry. The variety of applications specify the
general system requirements, such as size, load-capacity, load-
mechanism, navigation constraints, the number of deployed
vehicles, and type of the environment. In the following, we
discuss the different requirements.

The load is the most crucial requirement for material
transportation and differ due to the use-case in size and
shape, where the weight can raise up 65 t. AGVs are therefore
operating as a unit-loader or as a mobile manipulator. If only
transportation of goods is required, the AGV is either loaded
manually or by some automatic equipment. If interaction with
stands or conveyors is needed, an effector will perform the
material handling. For handling tasks where palletisation is
not possible, effectors like clamps or industrial robots handle
rolls, boxes and other raw materials. Otherwise, actuated
forks lift and drop material units are deployed. Regarding
the position accuracy when manipulating materials, usually
only low tolerances within 10mm or less are allowed. This
constrains, in particular, the localisation system, but also has
an influence on the type of kinematic drive chosen. Well-
established are localisation systems relying on reflector bea-
cons operating with a positioning accuracy of 4mm [3]. The
type of kinematic drive depends on the mass distribution, the
required accuracy and the degree of freedom needed. Common
in industrial applications are kinematic systems based on a
tricycle or differential drive, skid steering or asynchronous
drive mechanisms. In practice, the amount of actuated wheels
is limited to reduce cost and, hence, increase the profitability
of the system.

Automated guided vehicles (AGVs) is a rather long-
established discipline in mechanical engineering. A quick web
research yields numerous patents and a large number of pub-
lications from the 80’s and the 90’s. There are also a number
of successful industrial players around who offer AGVs on
the market for intra-logistics automation in production lines
or warehouses. The market share of USD 810 million in the
USA in 2015 is expected to grow by 7.3 % until 2024, as the
summary of a market forecast suggests [4]. The technology
used in many solutions is rather conservative using magnetic
stripes on the shop-floor etc. On the other hand, in the last
decade or so, many new innovative solutions appeared on
the market that make use of mobile robotics technology.
One of them is the KIVA system [1], now amazonrobotics.
There, hundreds of so-called pods, small robots that can pick
up inventory shelves, drive through a warehouse and bring
the shelves to pick workers who commission online orders.
Another rather novel approach is taken by Fetch Robotics.
Founded in 2014 by a former Willow Garage employee, they
just presented their latest development: the Freight500 (see,
for instance, [5]). It resembles very much the Clearpath OTTO

robot (e.g. [6]). What both these systems have in common is
that they make use of the Robot Operating System [7] for their
intelligent control software, as Melonee Wise, the founder of
Freight Robotics, explains in an interview with the Industrial
Robot Journal [8].

As our approach is likewise based on ROS, we outline the
Robot Operating System in the next section.

III. THE ROBOT OPERATING SYSTEM

To implement a navigation system which fulfils the re-
quirements of an industrial material transportation system,
a software system has to be designed that is capable of
coordinating all vehicles in the system, ensuring a conflict-
free travelling and performing material handling actions. To
do so, methods are required to localize the vehicle, perceive
the environment and plan optimal paths through the environ-
ment. Additionally, a hardware abstraction layer is required to
enable the communication with sensors and actuators. A driver
software on top has to interface with high-level applications.
This enables an evaluation of sensor readings and to control the
robot system. ROS is an open-source middleware for robotic
platforms. ROS provides all necessary features of an operating
system and enables the development of applications in C++
and Python. ROS is published under the BSD license, allowing
for commercial use of ROS [9]. It provides a large open-source
robotics library with state-of-the-art solutions for robotics
tasks such as localisation, path planning, image processing,
collision avoidance and motion control. The ROS runtime
environment manages the execution of applications and the
inter-process communication. One of the basic goals of ROS
is to enable small, mostly independent programs called nodes
that all run at the same time and can be executed on different
machines. That concept allows for a modularisation and a
computational distribution [10].

IV. CONTROL SYSTEM OVERVIEW

A. System Outline

The control system is implemented completely in ROS. We
made use of a number of already existing ROS components
and integrated them with some packages tailor-made for the
AGVR. Fig. 1 gives an overview of the overall system architec-
ture. The control system consists of the following components:

• Warehouse Management System (WMS)
• Action Level Execution Agent (ALEA)
• Navigation Graph (NavGraph)
• ROS Move-Base (MoveBase)
• Time Elastic Band planner (TEB)
In the following, we describe the different components in

detail and refer to their ROS implementations.
1) WMS: The Warehouse Management System controls the

movement and the storage of materials within the warehouse.
It is optimising the fragmented material storage by utilising
the available resources making use of the current input and
output demand. This is stimulating the material flow and
so the transport system. Transport orders are published and



Fig. 1: The overall system components

broadcasted to every transport vehicle. To deal with network
issues all orders are stored on the AGVs itself.

2) ALEA: The Action Level Execution Agent is a be-
haviour controller which is monitoring the state of the AGV
and controlling primitive actions such as pick, drop, goto
or chargeBattery. It is continuously listening to broadcasted
orders and selects the optimal order by priority, occurrence,
distance and time constraints. Knowing the position and the
assignment of all orders, ALEA assists in ensuring a blocking
and deadlock-free traffic. So when priority or traffic state
competitions determine a better vehicle assignment, order re-
allocation or “stealing” actions can be performed to improve
the material flow performance.

3) NavGraph: The NavGraph is a topological graph-based
route planner, initially developed for the robotic software
framework Fawkes [11]. The navigation graph consists of
nodes, segments and station elements (Fig. 2). In this work the
graph is based on bidirectional segments to enable a flexible
traffic flow. Each graph element is capable to hold properties
that can either influence the behaviour controller or the path
planning itself.

4) Navigation Stack: The ROS Navigation Stack is a soft-
ware collection for self-localisation, path planning and motion
control. Core application is the ROS move_base package.
move_base is implemented as an ROS action, giving a goal,
it will attempt to reach the destination using odometry and

Fig. 2: Topological Graph

other sensor readings while sending velocity commands to the
mobile robot base [12].

These are the base components for navigating the AGV with
ROS. In the following we go more into the details on the
navigation system.

B. Navigation Graph

A central component of the control architecture is the Nav-
igation Graph package for allowing dynamic and flexible path
planning. The NavGraph package was extended to coordinate
the AGV fleet and is executed on each vehicle to achieve a
decentralised system. Therefore inter-vehicle communication
is required to exchange information and the current state
between the vehicles. Considering upcoming traffic conflicts,
the same rules are defined on each vehicle to ensure that every
AGV comes up with the same solution. In the following we
give more details on the mechanisms behind this concept.

NavGraph can annotate each graph element with con-
straints. Such constraints have a direct effect on the path
planning and can, for example, force a vehicle to drive only
forwards. Based on the navigation graph, an A* search is
performed to determine the optimal path between a source and
destination node. Through the inter-vehicle communication,
NavGraph considers priority, current position, desired path and
the final goal of each vehicle. Checking all published routes,
NavGraph evaluates possible encounterings of vehicles. Based
on a priority competition NavGraph decides, which vehicle has
the right of way. This approach is based on [13].

NavGraph distinguishes between two phases for executing
a NavGraph goal, an offline and an online phase. The former
describes the period before the plan execution. Here, the
NavGraph package determines plans with or without partic-
ular path constraints. The path without particular constraints
represents the shortest possible route to the goal, a constrained
path is considering blockings and cost increasing factors like
speed or turning rates and represents a plan with possible
detours that have to be taken. NavGraph trades off between
the unconstrained and constrained path calculating a normed
difference and relates the unconstrained plan as the reference



Fig. 3: Resource competition scheme as modelled in [13]

dc =
(cc−uc)·100%

uc
, where, dc equals the detour cost in percent,

cc stands for the constrained plan cost, and uc resembles the
unconstrained path costs. Based on a threshold value it is
decided whether or not to execute a plan with a detour.

A detour is considered based on blocked pathways, but also
several other constraints such as narrow pathways or crossings
are taken into account.

Once a plan has been computed, all resources required
by that plan have to be requested. NavGraph distinguishes
between micro resources (Mr) and macro resources (MR).
Micro resources are nodes and edges which consist of a
path between the current vehicle position and the destination.
Macro resources are compositions of micro resources, typi-
cally a corridor, narrow passage, or a crossing. Micro resources
can be blocked by vehicles that are close-by for avoiding
collisions between vehicles. Macro resources serve the purpose
of vehicle coordination. They can be requested or allocated
by vehicles in the system in the online execution phase of the
plan.

In the online phase, NavGraph executes the previously
computed plan. To ensure a blocking-free execution of a
plan, NavGraph needs to take each vehicle in the system into
account. Therefore, state reports of a particular vehicle are
published and broadcasted to all vehicles in the fleet. This
inter-vehicle communication is based on so-called sign board
messages, which consist of the vehicle ID, the order priority,
the position of the currently occupied node, the target node, the
current speed and the vehicle’s intended path to the destination.

On the implementation level, the inter-vehicle communi-
cation is realised by a publisher/subscriber mechanism. For
each vehicle, a separate callback is defined which monitors
arriving messages and updates a local macro resource and
micro resource repository. Once a sign board message arrives,
an evaluation of the traversal progress is performed. All nodes
that have been passed by a vehicle are released together
with its corresponding macro resources. All resources that are
intended to be used are requested. On the micro resource level,
the callback listens to position updates from each vehicle.
Nodes in the vicinity of a vehicle pose, will be determined and
be marked as blocked to avoid collisions between vehicles.

The behaviour of the coordination system, which is executed
on each vehicle, can be divided into the following steps: (1) re-
quest macro resources, (2) check for shared nodes, (3) compete
for macro resources, (4) compete for micro resources.

Figure 3 visualises a simplified competition scheme, which
describes that an AGV has to ask for permission before it

Fig. 4: Encounter types: (T1) Crossroad, (T2) Follower, (T3)
Frontal (as given in [13])

Fig. 5: Time phases of two conflicting vehicles

can use a macro resource. That competition is priority based
and is calculated for each macro resource allocation request.
The priority is based on a weight sum function which has
the following parameters: order priority, order maturity and
accumulated speed that is allowed to drive on the path. The
order priority gets assigned the highest weight in order to
ensure on-demand commissioning; the order maturity is to
avoid starvation. The macro resource competition is also used
for determining conflicting encounters of AGVs. Conflicting
situations occur when resources are shared between pairs of
vehicles. There are three possible encounter types (see Fig. 4).
The three encounter types can be seen as sub-sequences of
nodes and characterised as follows according to the approach
in [13]: T1 occurs when only a single node is shared and
the rest of the sequences are unaffected, T2 occurs when at
least two nodes are shared and the rest of both sequences are
unaffected, T3 occurs when at least two nodes are shared and
one node sequence is inverted. The encounter determination
leads to the following information abstraction:

1) Identify the first conflicting MR and Mr

2) Identify the time to arrive at the conflict sequence
3) Identify the duration to pass the conflicting segments
Behaviour 1 above is used to stop a vehicle before the actual

conflict; the higher prioritised vehicles is given the right of
way. To avoid situations where a vehicle has to wait until all
conflicting resources are released, a trade-off is between the
arrival time and conflict duration using the behaviour 2 and 3
from above is used.

Figure 5 shows the different time phases of a conflict situa-
tion between two vehicles, where tAGV 1 and tAGV 2 stands for
the time the vehicles need to arrive at the conflict sequence,
and tconflict resembles the time it take to pass the conflict
sequence. In the case of tAGV 1+tconflict � tAGV 2, AGV 1 is
allowed the way of right despite a lower priority. This leads to
a better transportation flow and decreases the overall vehicle
waiting time. Another improvement is the determination of
follower sequences, where two vehicles heading into the same
direction. Instead of allowing only one vehicle to use the
resource, in that case, both gets the permission regardless their
priority. Is the leading vehicle delayed for some reason the
following will stop due to the micro level competition.



The NavGraph has the capability to act not only as a global
planner and determine paths in the topological graph, but is
also suitable to plan, determine and resolve traffic management
conflicts by exchanging information based on an inter-vehicle
communication.

C. The MoveBase and Trajectory Planning with TEB

The base_controller handles the communication with
the virtual hardware described in Section IV-D. Figure 1
shows the move_base as the last software level before that
base_controller. The move_base is interfacing with the 2D
LIDAR scanners to perceive the environment and provide a
contour-based odometry (scan matching odometry). This data
is combined with the wheel odometry provided by the VHD
and enhanced with an adaptive particle filter called amcl. The
resulting localisation is tracking the vehicle pose on a previ-
ously recorded map. The path planning part is divided into
global and local planning. Regarding the incorporation with
the NavGraph, the global path planner generates the shortest
path between two nodes. This is reducing the global planner’s
effort due to the distance between two nodes, that is limited
by the geometric layout of the facility. Ideally, the global
planner matches the connecting edge between two nodes. This
is always the case when no static obstacles interfere with the
direct path. If an obstacle is intersecting the path, the global
planner attempts to avoid it taking the vehicle geometric 2D
shape into account. The local planner integrates the current
sensor readings and also monitors dynamic changes in the
environment. Following the global path, the local planner is
also able to plan alternative paths around an obstacle. Due
to the tricycle-wheel configuration, the local planner has also
to consider the vehicle kinematic constraints, while sending
velocity commands in the form ~v = (~̇x ~̇y θ̇)T .

AGVs are designed to follow predefined tracks, similar to
trains that are moving along rails. In our approach, we deploy
the timed elastic band planner (TEB) [14] for local path plan-
ning. TEB generates a trajectory considering vehicle dynamic
and kinematic constraints. Adapting the trajectory constraints
(limiting the velocity, acceleration or goal tolerance) leads to
a customised behaviour with different local optimal solutions.
Communicating directly with the underlying robot motion
controller, TEB highly flexible and can be adapted to different
robot kinematics and application requirements [15].

Regarding the incorporation with the NavGraph, TEB is
responsible to travel from the current vehicle pose to an
specified target node. Figure 7 visualises basic trajectory
primitives that can be performed by the vehicle. NavGraph
nodes are displayed as spheres and linking segments as red
lines. Marked in green can be seen the resulting shortest
path generated by the global planner and the TEB solution
is visualised with blue vectors.

Considering that NavGraph provides the start and end
position, the node constellation is specifying the geometric
dependency of the local planner. If the node constellation is not
matching the configured geometric and dynamic constraints,
TEB will generate sub-optimal or infeasible trajectories.

(a) Turnaround (b) Left Turn

(c) Right Turn (d) Straight Move

Fig. 7: Trajectory primitives

Therefore TEB has to be optimised for kinematic saturation
and operate in proper limits of the actuation system before
the node layout is designed. Due to the used tricycle drive,
the vehicle is able to perform car-like motions and execute
smooth trajectories which reduced the tire wear. Additionally,
a turn in place is possible when actuating the steering wheel
−π to π, but tending the turning radius to zero would lead
to very low translational velocities. Therefore, operating TEB
for car-like behaviour requires a trade-off between optimising
for linear velocity or maximum steering angle. Although
the configuration is time consuming, TEB is significantly
reduces the complexity of the topological graph. Because of
the dynamic path generation, even complex trajectories are
feasible with two node pairs considering multiple start and
goal poses (see Fig. 6 and 6a). Another advantage is the
possibility to avoid dynamic obstacles in the environment. For
situations where the area space is sufficient this can guarantee
a static martial flow instead of stopping the AGV and wait until
an operator handles the blocking situation. This leads also to
a new traffic management concept, where large areas are not
constraint anymore by graph elements and the AGV fleet is
driving without the discrete knowledge about the position of
each vehicle in collision avoidance mode.

D. Simulation Model

The simulation model is realised as a virtual model in the
simulation environment Gazebo that comes with ROS (see
Fig. 8). Using the ODE physics engine, a realistic motion
generation has been achieved. The AGV is based on a tricycle
kinematic model, in Figure 8b marked in red. The frames
right_wheel and left_wheel are passive and are used to cal-
culate the vehicle odometry, while the frame front_steering
can be actuated in linear x and angular z direction. A virtual
hardware driver (VHD) is translating linear and angular ve-
locity commands into corresponding joint rotational velocities
to provide propulsion and steering. To simulate the dynamic
behaviour the steering speed can be limited. Additionally,
three virtual 2D LIDAR sensors are implemented to provide a
perception of the environment with an 360◦ field of view. This



(a) (Part of the) layout from a real shop floor showing possible trajectories (b) (Part of the) shop floor layout modeled with NavGraph

Fig. 6: Example shop floor layout

enables to sense static and dynamic obstacles, and based on
the contour information to localize the vehicle in the world.
A more detailed explanation follows in section IV-A4. Last
vehicle model element is the frame lifter, marked in 8b in
blue. This frame is realised as an prismatic Joint and is also
controllable through the VHD. The lifter is equipped with
standard forks to pick euro pallets, but different effectors like
clamps of custom mechanism are possible. All frames are
attached to the base_link frame which is the local vehicle
coordinate system, marked in Fig. 8b as black.

V. SUMMARY AND PERSPECTIVE

In contrast to the current state of the art in implementing
industrial AGV systems where the fleet of AGVs is controlled
centrally, the architecture proposed in this paper realises a
decentralised control with fully autonomous vehicles. The
AGV is capable of localising itself in a known environment
and finds its path through a discrete bi-directional topological
graph. In addition, the proposed system enables a simplifica-
tion of the global planning problem, limits the operating range
of the vehicle, accelerates the implementation time, reduces
the topological graph complexity and enables a dynamic
adaption to environmental changes and enables a predictive
traffic management based on an inter-vehicle communication
attempting to maximize the material flow-rate. First results
from simulation in Gazebo suggest that the position repeata-
bility has to be improved. The current measured values imply
values of 150mm (RMS), what is 15 times higher then the
industrial standard. Therefore additional sensors could be used
to decrease the position deviation. Considering the material
flow the first results are promising and comparable with real
implemented systems. This shows that ROS is a suitable
framework to design systems for industrial acceptance.
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