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ABSTRACT

Traffic information systems based on mobile, in-car sensor
technology are a challenge for data management systems as
a huge amount of data has to be processed in real-time. Data
mining methods must be adapted to cope with these chal-
lenges in handling streaming data. Although several data
stream mining methods have been proposed, an evaluation
of such methods in the context of traffic applications is yet
missing. In this paper, we present an evaluation framework
for data stream mining for traffic applications. We apply a
traffic simulation software to emulate the generation of traf-
fic data by mobile probes. The framework is evaluated in a
first case study, namely queue-end detection. We show first
results of the evaluation of a data stream mining method,
varying multiple parameters for the traffic simulation. The
goal of our work is to identify parameter settings for which
the data stream mining methods produce useful results for
the traffic application at hand.

Categories and Subject Descriptors

H.3 [Information Storage and Retrieval]: Systems and
Software—Performance evaluation (efficiency and effectiveness)

General Terms

Design, Performance

Keywords

Data Streams, Data Mining, Traffic Information Systems

1. INTRODUCTION
Though road traffic has never been as secure as today still

many people are injured or die in car crashes. On German
highways, collisions with driving ahead or waiting vehicles
have been the most common cause of traffic fatalities in 2009
[17]. Typical traffic scenarios which cause this type of colli-
sions are queue-ends. Therefore, the immanent question is,
how can these critical situations be detected and prevented.
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One method is to warn road users who approach the end
of a queue and give them the chance to adapt their speed
in due time. A traffic jam is not a static phenomenon –
it grows or shrinks over time depending on the traffic den-
sity. Therefore, the position of the queue-end has to be
updated at frequent intervals, which requires the collection
and analysis of up-to-date traffic data.

Data collection in road transportation is mainly executed
by two types of detection mechanisms – stationary and mo-
bile detection. Stationary detection uses sensors which are
permanently affixed to the road infrastructure, such as in-
ductive loops, cameras or weather sensors. However, the
costs for stationary detection infrastructure, its installation
and maintenance are high. Hence, only a fraction of the road
network can be covered by stationary detection. Mobile de-
tection uses the vehicles themselves as “sensors” and the col-
lected data is termed Floating Car Data (FCD). Extended
Floating Car Data (XFCD) includes also in-vehicle sensors,
such as rain sensors. Mobile communication technologies
enable the use of vehicles to collect data and to send it to
a traffic management center, as well as to exchange infor-
mation between a vehicle and the road infrastructure (Car-
to-Infrastructure Communication, C2IC) or between two or
more vehicles (Car-To-Car Communication, C2CC).

Not only the collection, but also the processing and analy-
sis of traffic data has to be done very fast to be useful for an
efficient queue-end warning mechanism. Storing the data
to disk and applying data mining methods on the stored
data is not applicable for sensor data as it has to be pro-
cessed in real-time. Therefore, we apply data streams and
corresponding Data Stream Management Systems (DSMS)
to address these challenges. A DSMS focuses on processing
current data. Windows comprising a time period of the near
past or a number of recently seen tuples are queried and the
data is dropped after processing. Queries are defined and
registered once and run frequently on the data. Also trends
in the data streams can be observed, e.g., by using synopses.

Besides the data management also data analysis tech-
niques, such as data mining, have to adapt to the specifics
of data streams. Therefore, data stream mining algorithms
have been proposed to account for fast and one-pass pro-
cessing of data. Characteristics of data stream mining algo-
rithms are, for example, the handling of a limited memory
size, and the ability to detect concept drifts in the data.
However, before data stream mining can be applied in traf-
fic applications, the following questions need to be answered:
(i) Which data stream mining methods with which param-
eter settings produce results in the desired quality? (ii)
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Which data sources and which amount of data have to be
analyzed to get good results? (iii) In what traffic situations
do the methods deliver satisfactory results? To answer these
questions, a thorough analysis of data stream mining meth-
ods for various traffic applications is necessary.

Our contribution is an evaluation framework for traffic ap-
plications based on a data stream management system and
data stream mining. We show the feasibility and efficiency of
the framework by a case study in the course of the project
Cooperative Cars1 (CoCar). A car equipped with CoCar
technology (called a CoCar in the following) sends a mes-
sage over a cellular network infrastructure, when it detects
a hazard, e.g., when it is braking hard, to vehicles in near
vicinity or a specific spatial area, depending on the event.
In our case study we use CoCar messages to determine for
a road section if it contains a queue-end. The proposed
framework enables us to evaluate the influence of different
parameters on the detection accuracy. Especially, not only
the influence of the characteristics of the road network or
the traffic can be analyzed, but also special features of the
data management system and data analysis can be exam-
ined. The framework uses our quality- and priority-based
traffic data fusion architecture presented in [10] which is
briefly explained in Section 2. Section 3 details how queue-
end detection is implemented. In Section 4 results of a first
evaluation are presented. Section 5 discusses related work
in queue-end detection and data streams. Finally, Section 6
concludes our results so far and discusses future work.

2. EVALUATION FRAMEWORK SETUP
The proposed evaluation framework is based on a data

management architecture, which we designed and imple-
mented in the CoCar project. For simplicity, in this section
we will explain only those parts of the architecture which
have been used in the framework and the case study, de-
tails can be found in [10]. The goal of the architecture is
to provide real-time fusion of traffic data to derive and to
provide new traffic information based on fused data. Three
main components constitute the architecture and are de-
scribed along with their realization in the framework in the
following. The overall architecture is depicted in Figure 1.

2.1 Data Sources
The architecture is designed to enable the use of multiple

data sources which are integrated in the data stream man-
agement system (DSMS). The data sources are one parame-
ter which is very interesting to evaluate in a traffic applica-
tion. Which data sources are sufficient for which traffic ap-
plication and what is the influence of integrating additional
data sources? Special emphasis is put on data sources of
mobile detection as they offer several advantages over sta-
tionary detection. One goal of our work is to find out to
which extent and within which limits mobile data sources
can be used for traffic applications, such as derivation of
traffic data [9] or traffic state estimation.

In the CoCar project, of course one important data source
are CoCars sending event-based messages in case of haz-
ards to warn other vehicles. The second important data
source are Floating Phone Data (FPD). FPD are anony-
mously collected positions of mobile phones. From these
positions other traffic data, such as the vehicle speed, can

1http://www.aktiv-online.org/english/aktiv-cocar
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Figure 1: The overall architecture

be derived. Other data sources can be TMC-RDS messages
or data from stationary detection sensors. The data can
be pushed or pulled from the corresponding data source to
the DSMS. For reasons of reproducibility, controllability and
sufficient data creation, we use the traffic simulation soft-
ware VISSIM by PTV AG2 to emulate the creation of data
from mobile and stationary sensors.

We create CoCar messages by using the VISSIM simula-
tion for the following events: a vehicle braking very hard and
a vehicle turning on the warning flashers. In our case study,
we focus on the CoCar messages only as we want to analyze
the usefulness of CoCar messages and parameters, such as
required equipment rates, for certain traffic applications.

2.2 Data Stream Management System
In our scenario, the data is produced at high rates and

hence, we need to process and analyze the data in a fast
way to deliver answers timely. Therefore, we decided to use
a DSMS for data processing and analysis. We use the Global
Sensor Network3 (GSN) system [1]. GSN provides a flexi-
ble, adaptable, distributable, and easy to use infrastructure.
The main concepts in GSN are wrappers and virtual sen-
sors. In GSN, we provide a wrapper for each data source
to receive the data. Each further processing step is encap-
sulated into a virtual sensor which creates the output data
by a query over the input data. For data stream mining,
we integrated the data stream mining framework Massive
Online Analysis (MOA)4 into the DSMS. We implemented
a virtual sensor for GSN which applies a data stream mining
algorithm on aggregated sensor data and outputs the results
as a data stream to the DSMS. The virtual sensor is generic,
i.e., the type of classifier algorithm and the corresponding
configuration can be defined in a virtual sensor configuration
file.

The DSMS exports the derived information and sends it
as messages over the CoCar infrastructure to the connected
road users, e.g., by Geocast (i.e., only into a certain geo-
graphic area). For example, the result can be a message an-
nouncing a queue-end at a certain position. The reception of
messages by the vehicles might influence their driving behav-
ior and the influence of this behavior on the corresponding
traffic application can be analyzed. However, this requires a
deep understanding on how drivers react to certain warning
messages based on social, cognitive, and empirical studies
which are out of the scope of our research. In our evalua-
tion framework, we also export statistics for evaluation, e.g.,

2http://www.ptv.de
3http://sourceforge.net/projects/gsn/
4http://www.cs.waikato.ac.nz/~abifet/MOA
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Figure 2: Overview of the queue-end scenario

mining accuracy, utilizing the export functionality of GSN.

2.3 Spatial Database
All traffic applications have spatial characteristics per def-

inition. Spatial databases have been introduced to ease and
speed up the work with spatial data using special data types
and functions. In our architecture, we store and query the
road network at hand by using the spatial functionality of
Microsoft SQL Server 20085. We export the roads (or links)
from the traffic simulation and store them as curve objects
in the database. Each time we have to localize a vehicle on
the network (a process termed Map Matching), we issue a
query to the spatial database. The Map Matching and us-
age of spatial data in our framework is explained in detail
in Section 3.

3. QUEUE-END DETECTION
To show the feasibility and effectiveness of our evaluation

framework, we setup a case study scenario which aims at the
detection of queue-ends. In our scenario, a road consists of
two links, one for each direction. A link can be divided into
sections. For each section of the links in the road network it
will be determined , if it contains a queue-end or not. The
scenario is aimed at investigating the influence of multiple
parameters on the detection accuracy. As a source for the
traffic data we use CoCar messages created by VISSIM as
described in Section 2. We detail the scenario setup step by
step in this section. An overview of the setup is shown in
Figure 2.

3.1 Traffic Simulation
As mentioned earlier, we use a traffic simulation to create

traffic data. The simulation operates on a simple road net-
work consisting of a highway of 3km length, i.e., two links
with two lanes each. The speed limit is unrestricted. The
links are almost straight, with one sharp turn as depicted in
Figure 3(a). One link contains a hazard (a construction site
with an excavator) narrowing the street to one lane, shown
in Figure 3(b). A reduced speed area encloses the construc-
tion site, restricting the maximum speed to 80km/h.

To prepare the simulation runs, the links have to be stored
in the spatial database as curves to enable a Map Match-
ing later on. As we want to identify the part of the road in
which the queue-end is currently located, we divide the links
of the road into sections of equal length. For each section,
we will determine whether it contains a queue-end or not.
The length of the section is obviously a parameter which
has an influence on the accuracy of the queue-end detec-
tion. Therefore, we will investigate different section lengths

5Other DB products provide similar functions for spatial
data, thus, we are not limited to this particular product.

in Section 4.
Each section is stored in the spatial database with its start

point, its end point, the index of the first point and the last
point of the link curve lying between start and end point of
the section. This storage method ensures that the curve of
a section can be easily reconstructed, but avoids redundant
storage of partial curves for each section.

Since we employ learning, besides the network and the
CoCar messages, we also need to determine the correct class
for a section (does it contain a queue-end?) to train the
mining algorithm, i.e., the ground truth. Hence, we added
queue counters in the VISSIM road network, which are able
to measure the length of a queue starting from their own
position. A vehicle starts queueing when it is slower than
15 km/h and has a maximum distance of 20m to the vehicle
in front. It stops queueing if it is faster than 30 km/h.
The queue lengths are measured every ten seconds and if a
queue is detected a corresponding message is created which
contains the position of the queue-end. When the simulation
is started the CoCar and queue-end messages are sent via
TCP to the server hosting GSN.

3.2 Conversion, Degradation, Map Matching
The GSN system is started simultaneously with the sim-

ulation. For each message type, a separate wrapper is pro-
vided in GSN, which receives and converts the data to the
GSN data format. Stream elements in GSN are defined
according to a flat relational schema, i.e., comparable to
datasets of a single table. The stream elements created
from the CoCar messages are forwarded to a degradation
virtual sensor. Each CoCar message contains, beside other
information, the position, speed and acceleration of the ve-
hicle sending the message. One common issue in mobile
data detection is, that the measured positions contain some
error whose amount depends on the used positioning tech-
nique. This error influences the accuracy of traffic infor-
mation which has been shown, e.g., in [9], and therefore,
has to be considered. In case of the CoCars we can assume
GPS positioning accuracy (9m error at maximum). To ap-
proximate reality as close as possible the exact positions in
the messages created by VISSIM have to be degraded. To
that end, we use a normal distribution to model the error.
When working with real data sources this step is obsolete, of
course. The accurate positions are replaced by the degraded
positions in the stream elements and forwarded – all other

(a) Simulation track

(b) Hazard on the track

Figure 3: The scenario track and a hazard
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data remains unaltered.
The next virtual sensor matches the positions of the Co-

Car messages to the road network, which is termed Map

Matching. Map Matching is the process of finding the closest
link and point to the position where the road user actually
is located. One very basic map matching technique is Sim-
ple Map Matching. In Simple Map Matching the road and
the point with the shortest perpendicular distance to the
measured point are selected. More sophisticated methods
also consider the trajectory of a vehicle and the topology of
the network. For a detailed survey on map matching see for
example [18]. The CoCar messages do not contain any iden-
tifying information about the vehicle sending the message.
Without information about the trajectory of the vehicle, we
can only utilize Simple Map Matching. The Map Matching
also contributes to a realistic scenario as it also introduces
an error common in traffic applications.

The data in the queue-end messages represents the ground
truth of the scenario. In this case, the correct position is
mandatory and is not degraded. But, to determine the links
and sections the queue-ends are located on, the correspond-
ing stream elements are forwarded from the wrapper to a
second map matching sensor. This sensor works in the same
way as the CoCar Map Matching sensor. It introduces no
error, because the positions lie exactly on the sections and
are map matched precisely.

3.3 Integration and Aggregation
After the position of each message has been matched to a

section, we need to prepare the data for data stream min-
ing. The overall goal of the mining process is to determine
for a set of data describing the traffic situation on the sec-
tion at hand, if the section contains a queue-end. In our
approach, we aggregate data of messages with positions ly-
ing on a particular section for a certain time window. This
means, we calculate the following parameters from the Co-
Car data stream elements for one section and a time window
over the last x time units:

• average speed (AVGSPEED)

• average acceleration (AVGACCEL)

• number of hard braking vehicle messages (EBL)

• number of warning light announcement messages (WLA)

In GSN there are two levels of continuous queries which
are defined for assembling the output of one virtual sensor.
Firstly, the required data streams currently active in the
GSN system can be queried. Secondly, an overall query for
joining the results of the data stream queries can be defined.
This means, the aggregation and integration can be done in
one virtual sensor. To complete the training dataset for the
data stream mining, we have to join the aggregated data
with the real queue-end stream elements, which define the
true class value of each dataset. Both streams are joined
over the section and the time window. The join is obsolete
if no training is performed.

3.4 Data Stream Mining
In our approach, queue-end detection is casted as a binary

classification task. A classifier has to decide according to the
dataset at hand, whether a section contains a queue-end or
not. As depicted in Figure 2, we can setup the scenario
according to the two classical data mining modes: training
and classification. If a classification without training is re-
quired, the obsolete virtual sensors can easily be removed.

As already mentioned, we integrated the data stream mining
framework MOA into GSN by encapsulating it into a virtual
sensor. MOA is based on the well-known mining framework
Weka6. In the mining virtual sensor, the incoming data
stream elements are converted into MOA compatible train-
ing instances. To test the accuracy of the algorithm, we use
a Test-Then-Train approach. In this approach each instance
is used twice: firstly, it is used to test the accuracy and per-
formance of the current classifier (the classifier has not seen
this example yet). Secondly, it is used for the training of
the classifier afterwards. This maximizes the use of the ex-
amples available and allows an accuracy analysis on a very
fine-granular level [5]. The statistics of the tests comprise
the number of instances used for training so far and val-
ues for true positives and negatives and false positives and
negatives.

So far, we started evaluation with the implementation of
a Hoeffding Tree classifier included in the MOA framework,
which is “state-of-the-art for classifying high speed data
streams”[5]. The Hoeffding tree splits on an attribute if
the difference between the attribute’s estimated informa-
tion gain and the information gain of the second best at-
tribute excels the determined Hoeffding bound. The Ho-
effding bound has been originally introduced to data stream
mining by Domingos and Hulten [13]. For the configuration
of the algorithm a default set of options has been used, be-
cause we want to focus on the evaluation of the influence
of varying traffic scenario parameters, such as penetration
rate. In future research we will include the evaluation of
multiple algorithms and corresponding configuration sets.

After the mining algorithm classified an instance the statis-
tics of the classifier are updated and the classifier is trained
on the instance. The corresponding stream element is en-
hanced with the estimated class and statistical information
and passed on in the GSN system. If a section has been
classified to contain a queue-end, the coordinates of the sec-
tion midpoint are retrieved by querying the spatial database.
Then, a corresponding CoCar message is generated contain-
ing this position and sent back to the VISSIM simulation
via TCP. The estimated queue-end and the correct queue-
end are visualized by blue and red traffic signs as shown in
Figure 3(b).

4. EVALUATION
We demonstrate the usability and efficiency of our frame-

work on one example traffic application. The goal of this sce-
nario is to investigate the influence of several parameters on
the accuracy of the queue-end detection using data streams,
data stream mining, and CoCar messages as data source as
detailed in Section 3. In this evaluation, we focus on the
effect of various application-related parameters on the accu-
racy of the detection method. We analyzed three parame-
ters, which seemed to be most promising in the queue-end
scenario: the penetration rate of CoCars, the traffic volume,
and the length of the sections. In addition, we studied one
system-related parameter: the window size of the queries
in the DSMS, i.e., the amount of data from the past which
is taken into account by the data stream mining methods.
For the queue-end detection time-based windows have been
used, to select data from the last defined period of time, e.g.,
the last minute.

6http://www.cs.waikato.ac.nz/~ml
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For the evaluation, a default configuration of these param-
eters has been determined. We set the penetration rate to
5%, the traffic volume to 2500 veh/h and the section length
to 100 meters. The window size was chosen to be 120 sec-
onds. To see the influence of one parameter, this parameter
has been varied and all other parameters kept their default
value. The following evaluations of the data mining results
have been made for each run, whereby we define two classes
to be identified by the classifier: sections with a queue-end,
denoted as Positives, and sections without a queue-end, de-
noted as Negatives.

• Overall accuracy: Determines the ratio of instances
with correctly classified classes to the number of all
instances classified so far.

True Positives + True Negatives

Positives + Negatives
(1)

• Sensitivity: Sensitivity is the ratio of correctly iden-
tified queue-ends to the number of all real queue-ends.

True Positives

True Positives + False Negatives
(2)

In this scenario, we are highly interested in the sen-
sitivity, because it is more dangerous to leave a real
queue end unrevealed as to forecast a non-existent
queue-end.

• Specificity: Specificity is defined as the ratio of the
number of correctly classified sections without queue-
end to the number of all Negatives.

True Negatives

True Negatives + False Positives
(3)

Each evaluation starts with a new tree, i.e., the classifier has
not seen any training instances so far. To ensure compara-
bility, all components in the framework have to work in a
reproducible manner, i.e., all randomized elements have to
be set to a fixed seed. For example, each traffic simulation
run configured with the same parameters is identical, i.e.,
the raw data produced by the vehicles is always the same as
well as the traffic state in each time step. To test the com-
parability, two identical evaluation runs with default values
have been made before starting the actual tests. The runs
had almost identical accuracy gradients and differed no more
than 3% in value. Differences in values can be explained by
minor time shifts induced by TCP transfer in GSN and dif-
ferences in time between start of the simulation and start
of the GSN system. That means, the time windows might
not be at the exact same position in the time line as they
had been in the run before and therefore, might not result
in identical averages. Each simulation run had a duration of
30 minutes. The average mining times for one element lay
between 10 and 20ms, while the algorithm mined up to 5833
elements per run. In the following, we describe each evalu-
ated parameter and discuss and show the most interesting
results of the experiments.

4.1 Window Size
The window size determines how much data of the past is

taken into account by the data stream mining algorithm. A
good window size would be very close to the average time
for which the queue-end stays in one section. For example,
if the queue-end is 50 seconds in section A and 50 seconds in
section B, then with a window size of 100 seconds (or more),
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the system would not be able to make a distinction between
section A and B. On the other hand, if the window size is too
small, the mining algorithm will not get enough information
to determine that a queue-end is in a particular section.
Based on some initial observations on the time needed for a
queue-end to go from one section to the next (we observed a
time of about 100 to 200s for the default traffic volume), we
decided to vary the window size parameter between 10 and
300s. The results for accuracy and sensitivity are shown in
Figure 4 and 5.

The results for accuracy are not helpful to identify a good
window size as there are much more negatives than positives,
especially for the smaller window sizes. Therefore, a window
size of 10s has the best accuracy although there is never a
true positive (the line for a window size is not visible in
Figure 5 as it is always at 0%). The results for sensitivity
show that our initial estimation for a good window size was
correct, as window sizes of 90s and 120s deliver most of the
time the best results. The noisy start phase of about 300s
should not be taken into account as the traffic jam has not
been established yet and the mining algorithms could not be
trained on many positives up to that point. It is interesting
to see that a window size of 300s delivers in the end the best
results, although the sensitivity has been much worse earlier.
Furthermore, it can be observed, that sizes over 120s seem to
stabilize in the end in contrast to smaller sizes, which fall all
the time. We need more experiments with longer simulation
times to get a conclusive result for the window size.

4.2 Traffic Volume
The traffic volume is given in vehicles per hour. It is

expected that, when the traffic volume increases, more ve-
hicles will be present in one section. This will also lead to a
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higher volume of CoCars per section and enhance the num-
ber of messages per section. Additionally, a queue will grow
faster when the amount of traffic is higher, which results
in a higher rate of vehicles actively braking and switching
on their warning flashers. It can be assumed that a higher
amount of messages will lead to a more reliable approxima-
tion of the actual traffic state in one section. Therefore, we
expect the accuracy to increase when the traffic volume is
rising. According to current statistics published by the Ger-
man Federal Highway Research Institute7 on German high-
ways traffic volume averages 1500 veh/h calculated from the
daily traffic volume (including the low-traffic night). How-
ever, traffic queues occur at higher volumes during the day.
Therefore, we experimented with 2500, 3000 and 3500 veh/h
(additionally, 1500 veh/h did not lead to any queueing in
our traffic scenario). For these runs we extended our net-
work links to 5km length, to provide enough space for the
queue.

The accuracy results, depicted in Figure 6 fulfill our ex-
pectations: the accuracy rises with the increase of traffic
volume. Skipping the noisy start phase, it can be observed
that the accuracy is above 80% for all tested traffic volumes,
even above 90% for a traffic volume of more than 3000 vehi-
cles per hour. As expected, the highest traffic volume deliv-
ers the best results. The number of seen examples increases
in each run (which is also dependent on the duration of the
run). While in the 2500 veh/h run the classifier trained on
2058 instances, in the 3500 veh/h run the classifier observed
5833 examples which corroborates the assumption, that the
number of messages rises with increasing vehicle volume.
But the analysis of the specificity and sensitivity evaluation
showed, that the biggest portion of the correctly classified
instances are constituted by true negatives. The specificity
reaches accuracies of 98% at maximum in the 3500 veh/h
run and shows the same pattern (rising values with rising
volumes), while the sensitivity only reaches about 40% in
the 3000 veh/h run and no clear trend in the runs can be
observed.

An analysis of the ratio of the “real” positives to negatives
reveals, that with increasing traffic volume and hence, in-
creasing queue length, obviously the portion of sections from
which messages are received and are containing a queue-end
in a time window decreases (from 14% in 2500 veh/h run to
4% in 3500 veh/h run), while the fraction of sections which
do not contain a queue-end increases. The latter group are
most likely sections with congested traffic, but do not con-
tain the queue-end. This fact leads to reconsideration of the

7http://www.bast.de
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used attributes (Are they suited to distinguish sections with
queue-ends from sections without queue-ends? Are their val-
ues close enough to real traffic situations?). In the data it
is conspicuous, that emergency braking messages outweigh
warning flasher messages. But braking to that extent may
also occur when vehicles are in the middle of the queue. As
warning flashers usually occur at the end of a queue and not
in the queue, a remedy could be, to give a higher weight to
the warning flasher messages in the decision process (boost-
ing).

4.3 Penetration rate
One of the most common and interesting questions for

traffic applications based on mobile detection is: how many
vehicles must be equipped with the technology to deliver ac-
ceptable results for an application? Huber [12] identified in
his analysis, that a general assumption for FCD penetration
rates cannot be made, but has to be evaluated in the con-
text of the information system, the traffic application, and
the required output quality at hand. The penetration rates
he identified in the analyzed studies vary between 1-5%. We
took these values as a basis and made experiments with 3%,
5%, 7% and 10% penetration rate. It is expected that a
higher penetration rate would lead to a higher accuracy, as
it can be assumed that a higher amount of messages per
section is produced. The results for this experiment were
inconclusive – no clear trend could be identified in the avail-
able simulation time.

In the last section, traffic volume turned out to be a
promising influence factor to enhance the accuracy. There-
fore, we repeated the experiments with a traffic volume of
3000 veh/h. In Figure 7 the accuracy results are shown. Sur-
prisingly, the experiment showed that all penetration rates
converge to a value between 93% and 95%, which would lead
to the assumption, that the penetration rate has no influence
on the accuracy. Again, the specificity is the most influential
indicator, showing the same pattern as the overall accuracy,
while the sensitivity again is inconclusive: though, 10% pen-
etration has the highest and 3% the lowest accuracy, 5% is
substantially better than 7% penetration rate. More sim-
ulations would be very beneficial here to see, if this is the
case also for other traffic scenarios.

4.4 Section Length
One very interesting parameter to consider is the length

of the sections. The section length influences the flow rate
of the system. Obviously, smaller sections lead to a higher
amount of mining instances. Furthermore, with smaller sec-
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tions the real queue-end can be approximated to a higher
degree if classified correctly, because the mean distance be-
tween the real queue-end and the middle of the section (the
forecasted queue-end) is smaller. Due to the lack of empiri-
cal data, we selected section lengths in a way, that results in
a tolerable mean error of distance to the real queue-end (at
most half of the section length). We experimented with 30,
50, 100 and 150 meters. It is expected that a maximum in
accuracy is identified for a certain section length. Too small
sections produce a too small amount of messages which are
not sufficient to determine whether there is a queue-end or
not. Too long sections are expected to be harmful to accu-
racy, because they can contain too many messages, which
do not indicate the correct class. We present the results in
Figure 8. Surprisingly, it can be observed, that a shorter
section length seems to be more beneficial to accuracy. But,
the analysis of the specificity and sensitivity shows again,
that negatives have the highest impact on the result as the
number of positives in the overall training instances only
reaches 12%.

In conclusion, the first results of the experiments show
trends of influential parameters and reveal promising ac-
curacy values also for smaller penetration rates. However,
the results are not sufficient to draw final conclusions as we
need to evaluate different traffic scenarios and fine tune the
data stream mining algorithm. Especially, the low sensi-
tivity rates and inconclusive results need further investiga-
tion. However, it has been shown, that the framework can
be used for the evaluation of traffic applications in a very
flexible way. It can easily be extended, to investigate other
parameters or applications.

5. RELATED WORK
Data stream management systems and data stream min-

ing is a young research area and found its way into traffic
applications in recent years. For example, the product Mine-
Fleet [14] integrates data stream mining into vehicle embed-
ded systems for fleet monitoring to analyze vehicle health,
emissions or driver behavior. Another approach detecting
driver behavior is presented by Horovitz et al. [11], which
use a combined approach of unsupervised data stream clus-
tering and fuzzy logic to detect drunken driver behavior.
Liu et al. [16] propose a distributed traffic stream mining
system for determination of congestion level using Frequent
Episode Mining. On a central server frequent patterns are
determined based on historical data and are then distributed
to stationary detectors, which use the pattern to classify
data from the sensors. The benchmark Linear Road bench-
mark for DSMS in [3] allows for performance measurements

(throughput and response time) and comparison of multi-
ple DMS. The benchmark is based on a simulated traffic
scenario which calculates tolls for vehicles driving into ar-
eas with congestion and accidents. The traffic scenario is a
means to the end of producing data for system stress tests,
but does not aim at analyzing the utilized traffic applica-
tion. Hence, complex tasks, such as mining, are not ana-
lyzed, because it was not given prominence to the realistic
simulation of a traffic scenario. Furthermore, they do not
take into account possible effects of the communication sys-
tem or feedback to the vehicles. Also global players in data
management work on solutions for traffic applications based
on data stream management. Recently, IBM proposed a
real-time traffic information management system based on
its streaming platform Infosphere Streams [4]. They used
GPS data from taxis and trucks of the city of Stockholm to
calculate travel times and shortest paths between city parts
to demonstrate the effectiveness of their system. Microsoft
integrates handling of spatial data with data stream capa-
bilities implemented in StreamInsight [2].
For mobile detection of traffic data, there have been sev-

eral studies, which aim at rating the accuracy of the created
traffic information. Especially, in the field of anonymously
collected Floating Phone Data the interest is high. These
studies can be divided mainly into field studies and simula-
tion studies. Intensive simulation studies have been carried
out by Fontaine et al. [7, 8]. They investigated the influ-
ence of different parameters in the road network and mobile
network on the accuracy of traffic information, such as link
speed. However, they do not consider the characteristics of
the processing information system and do not incorporate
analysis techniques, such as data mining, to derive events
or traffic information from the collected data. In our work,
we investigate the influence of varying road and traffic pa-
rameters, and we also take into account the special features
of a data stream management system, such as window size,
sliding step, and of data stream mining, such as concept
shift.
The investigation of queue-end detection algorithms is an-

other important line of work. Huber [12] studied the oppor-
tunities in traffic information collection using XFCD. He
analyzed, which in-vehicle information, e.g., collected over
CAN bus or sensors, can be used to detect certain local
traffic events. One example he investigated is the queue-
end detection using a deceleration parameter, an indicator
for low speed level, right turn signals, the road type, and
warning flashers. The event determination is implemented
using fuzzification and a rule base. To reach 90% proba-
bility that a vehicle arrives at an incident in a one minute
interval a penetration rate of 6.9% is required already. In
contrast, our system would be able to announce a queue-end
in a much lower time interval (10s) and is therefore more
suitable for local hazard warnings. Furthermore, the system
does not use any learning. Fuzzification and rules are man-
ually defined. The use of fuzzy rules would be an interesting
extension to our method. In [6] Chan et al. present a sys-
tem for real-time queue tracking based on the average speed
detected on road sections by identifying three traffic zones
and analysing the arrangement of these zones. Though, the
authors base their work on stationary detection and have
to rely on larger sections (minimum of 500m between loop
detectors on a comprehensively equipped highway), the idea
of identifying the parts of the queue seems appealing and
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could be integrated in our system to enhance the quality
of the detection mechanism. More current work on queue-
end detection uses methods from the field of artificial intel-
ligence. In [15] Khan presents a simulation study also based
on VISSIM using stationary sensors as data source. They
analyze the data using Artificial Neural Network models,
predicting the current queue length based on accumulated
numbers of cars and trucks at fixed locations. Although they
postulate real-time processing in their information system,
the used algorithm is not capable of online learning, i.e.,
it cannot adapt to concept changes, which can be achieved
by using data stream mining algorithms as proposed in our
approach.

6. CONCLUSION
In this paper, we presented a framework for simulation-

based evaluation of traffic applications. The framework con-
sists of a traffic simulation, a data stream management sys-
tem, data stream mining algorithms, and a spatial database
system. It enables us to evaluate the influence of param-
eters of road networks and traffic scenarios as well as the
impact of characteristics of the information system and the
data mining algorithms. In a case study on queue-end detec-
tion, we illustrated that our approach yields feasible means
to investigate effects of these parameters. The results of the
evaluation carried out show, that trends in accuracy and
specificity based on varying parameter configurations can be
observed already with small sets of training instances. Re-
sults for sensitivity, an indicator for the detection accuracy
for queue-ends, were inconclusive in the tests, most proba-
bly due to the small ratio of positives in comparison to neg-
atives in the training instances and also the high number of
map matching errors (almost 47% for default values). While
traffic volume seems to be a strong factor influencing data
mining accuracy, the penetration rate showed no crucial ef-
fect. The section length had a high impact on the accuracy,
caused by the small number of messages and the even higher
difference in the number of positives opposed to negatives,
which has been reflected in the results for the sensitivity. As
the flexibility of the framework enables the analysis of the
effect of a variety of parameters in the data management
system and the data stream mining, further evaluations are
the next step in our work plan. Additionally, we will in-
vestigate means to enhance the accuracy and sensitivity of
queue-end detection, by enhancing Map Matching accuracy,
by boosting certain input attributes, or by including data
of adjacent sections. in the decision process. Also, taking
into account other data attributes and data sources for the
mining algorithms is easily possible in our data fusion archi-
tecture. In conclusion, it has been shown that the framework
is a very good instrument to study traffic applications and
the corresponding information system.
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