This course is about the logic of knowledge bases, in two distinct but related senses. On the one hand, a knowledge base is a collection of sentences in a representation language that entails a certain picture of the world represented. On the other hand, having a knowledge base entails being in a certain state of knowledge where a number of other epistemic properties hold. One of the principal aims of this course is to develop a detailed account of the relationship between symbolic representations of knowledge and abstract states of knowledge. Students wishing to attend the course should be familiar with first-order predicate logic.
The proseminar will be on different (sub-)topics from artificial intelligence. We largely follow the lines of the well known textbook by Stuart Russell and Peter Norvig “Artificial Intelligence - A Modern Approach”.
In this seminar we will study several modeling and reasoning techniques for knowledge and belief in dynamic systems. Knowledge is an important aspect of intelligent programs: while most of today’s systems assume a closed world, i.e., everything they don’t know to be true is assumed to be false, an intelligent system needs to consider possible that there are truths not known to the system. In a dynamic environment, i.e., an environment where one or multiple agents (inter)act, the system will usually have to acquire new knowledge through sensing. Potentially it may even revise its beliefs when it realizes some beliefs were wrong. In this seminar we will study various aspects of action, knowledge, and belief.